Patents by Inventor Mark Stasik

Mark Stasik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11913759
    Abstract: A supercapacitor-like device is described that uses a porous, conductive foam as the electrodes. After the device is charged, an explosive wave front can be used to remove electrolyte from the metal foam. This creates a large net charge on each electrode, which will readily flow through a load placed across the electrodes. The removal of charge can potentially occur on a time scale of microseconds, allowing a supercapacitor to be used in pulsed power applications. The creation of this net charge requires significant energy, meaning this concept may also be suitable for removing kinetic energy from objects.
    Type: Grant
    Filed: November 4, 2021
    Date of Patent: February 27, 2024
    Assignee: Battelle Memorial Institute
    Inventors: Steven Risser, Mark Stasik, Kelsey Doolittle
  • Publication number: 20220236034
    Abstract: A supercapacitor-like device is described that uses a porous, conductive foam as the electrodes. After the device is charged, an explosive wave front can be used to remove electrolyte from the metal foam. This creates a large net charge on each electrode, which will readily flow through a load placed across the electrodes. The removal of charge can potentially occur on a time scale of microseconds, allowing a supercapacitor to be used in pulsed power applications. The creation of this net charge requires significant energy, meaning this concept may also be suitable for removing kinetic energy from objects.
    Type: Application
    Filed: November 4, 2021
    Publication date: July 28, 2022
    Inventors: Steven Risser, Mark Stasik, Kelsey Doolittle
  • Patent number: 11181344
    Abstract: A supercapacitor-like device is described that uses a porous, conductive foam as the electrodes. After the device is charged, an explosive wave front can be used to remove electrolyte from the metal foam. This creates a large net charge on each electrode, which will readily flow through a load placed across the electrodes. The removal of charge can potentially occur on a time scale of microseconds, allowing a supercapacitor to be used in pulsed power applications. The creation of this net charge requires significant energy, meaning this concept may also be suitable for removing kinetic energy from objects.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: November 23, 2021
    Assignee: Battelle Memorial Institute
    Inventors: Steven Risser, Mark Stasik, Kelsey Doolittle
  • Publication number: 20200225005
    Abstract: A supercapacitor-like device is described that uses a porous, conductive foam as the electrodes. After the device is charged, an explosive wave front can be used to remove electrolyte from the metal foam. This creates a large net charge on each electrode, which will readily flow through a load placed across the electrodes. The removal of charge can potentially occur on a time scale of microseconds, allowing a supercapacitor to be used in pulsed power applications. The creation of this net charge requires significant energy, meaning this concept may also be suitable for removing kinetic energy from objects.
    Type: Application
    Filed: June 27, 2018
    Publication date: July 16, 2020
    Inventors: Steven Risser, Mark Stasik, Kelsey Doolittle
  • Patent number: 9379644
    Abstract: Rotary motion devices (10) are provided. In one embodiment, the rotary motion devices (10) may comprise: a mass (12); a circumferential component (14); a plurality of spokes (16) connecting the mass (12) to the circumferential component (14), at least one of the spokes (16) comprising an electroactive polymer, wherein: the at least one spoke (16) has at least one input electrode and is configured to deflect upon application of an electrical potential across the at least one input electrode, and the rotary motion device (10) is configured such that deflection of the at least one spoke (16) causes the mass (12) to move, thereby causing the rotary motion device (10) to become off balance with respect to gravity, and rotate.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: June 28, 2016
    Assignee: Battelle Memorial Institute
    Inventors: Jay Sayre, Mark Stasik, Chuck Plaxico, Megan Moore, Vincent D. McGinniss, James Kennedy
  • Publication number: 20130192910
    Abstract: Rotary motion devices (10) are provided. In one embodiment, the rotary motion devices (10) may comprise: a mass (12); a circumferential component (14); a plurality of spokes (16) connecting the mass (12) to the circumferential component (14), at least one of the spokes (16) comprising an electroactive polymer, wherein: the at least one spoke (16) has at least one input electrode and is configured to deflect upon application of an electrical potential across the at least one input electrode, and the rotary motion device (10) is configured such that deflection of the at least one spoke (16) causes the mass (12) to move, thereby causing the rotary motion device (10) to become off balance with respect to gravity, and rotate.
    Type: Application
    Filed: June 23, 2011
    Publication date: August 1, 2013
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Jay Sayre, Mark Stasik, Chuck Plaxico, Megan Moore, Vincent D. McGinniss, James Kennedy