Patents by Inventor Mark W. Gailus

Mark W. Gailus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11637401
    Abstract: A cable termination that provides low signal distortion even at high frequencies. Conductive elements of the cable are fused to edges of signal conductors in a cable connector or other component terminating the cable. For terminating a differential pair, the conductive elements of the cable may be terminated to opposing edges of a pair of signal conductors in the cable termination. The conductive elements may be shaped such that the spacing between signal paths passing through the conductive elements of the cable and into the signal conductors of the cable termination is uniform.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: April 25, 2023
    Assignee: Amphenol Corporation
    Inventors: Mark W. Gailus, Allan Astbury, David Manter, Marc B. Cartier, Jr., Vysakh Sivarajan, John Robert Dunham
  • Patent number: 11637389
    Abstract: An electrical interconnect for passing high speed signals through an electronic system with a high density of signals and high signal integrity. The interconnect includes an electrical connector and a transition portion of a printed circuit board to which the connector is mounted. Signal conductors are connected to pads on the surface of the PCB using edge-to-pad mounting. The pads align with intermediate portions of the signal conductors such that transitions within the connector that could degrade signal integrity are avoided. The signal conductors may be positioned as individually shielded broadside coupled pairs extending in rows within the connector. Surface traces on the PCB connect the pads to signal vias aligned for vertical routing out of the connector footprint. Ground planes underlying the surface traces facilitate a transition from the signal paths in the connector to those in the PCB with low mode conversion avoiding resonances in the connector shields.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: April 25, 2023
    Assignee: Amphenol Corporation
    Inventors: John Robert Dunham, Marc B. Cartier, Jr., Mark W. Gailus, David Levine, Allan Astbury, Vysakh Sivarajan, Daniel B. Provencher, Eric Leo
  • Patent number: 11637403
    Abstract: An electrical interconnect for passing high speed signals through an electronic system with a high density of signals and high signal integrity. The interconnect includes an electrical connector and a transition portion of a printed circuit board to which the connector is mounted. Signal conductors are connected to pads on the surface of the PCB using edge-to-pad mounting. The pads align with intermediate portions of the signal conductors such that transitions within the connector that could degrade signal integrity are avoided. The signal conductors may be positioned as individually shielded broadside coupled pairs extending in rows within the connector. Surface traces on the PCB connect the pads to signal vias aligned for vertical routing out of the connector footprint. Ground planes underlying the surface traces facilitate a transition from the signal paths in the connector to those in the PCB with low mode conversion avoiding resonances in the connector shields.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: April 25, 2023
    Assignee: Amphenol Corporation
    Inventors: Marc B. Cartier, Jr., John Robert Dunham, Mark W. Gailus, David Levine, Allan Astbury, Vysakh Sivarajan, Daniel B. Provencher, Eric Leo
  • Publication number: 20230113153
    Abstract: A printed circuit board includes a plurality of layers including attachment layers and routing layers; and via patterns formed in the plurality of layers, each of the via patterns including first and second signal vias forming a differential signal pair, the first and second signal vias extending through at least the attachment layers; ground vias extending through at least the attachment layers, the ground vias including ground conductors; and shadow vias located adjacent to each of the first and second signal vias, wherein the shadow vias are free of conductive material in the attachment layers. The printed circuit board may further include slot vias extending through the attachment layers and located between via patterns.
    Type: Application
    Filed: December 13, 2022
    Publication date: April 13, 2023
    Applicant: Amphenol Corporation
    Inventors: Mark W. Gailus, Marc B. Cartier, JR., Vysakh Sivarajan, David Levine
  • Patent number: 11546983
    Abstract: A printed circuit board includes a plurality of layers including attachment layers and routing layers; and via patterns formed in the plurality of layers, each of the via patterns including first and second signal vias forming a differential signal pair, the first and second signal vias extending through at least the attachment layers; ground vias extending through at least the attachment layers, the ground vias including ground conductors; and shadow vias located adjacent to each of the first and second signal vias, wherein the shadow vias are free of conductive material in the attachment layers. The printed circuit board may further include slot vias extending through the attachment layers and located between via patterns.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: January 3, 2023
    Assignee: Amphenol Corporation
    Inventors: Mark W. Gailus, Marc B. Cartier, Jr., Vysakh Sivarajan, David Levine
  • Publication number: 20220329015
    Abstract: An interconnection system with a compliant shield between a connector and a substrate such as a PCB. The compliant shield may provide current flow paths between shields internal to the connector and ground structures of the PCB. The connector, compliant shield and PCB may be configured to provide current flow in locations relative to signal conductors that provide desirable signal integrity for signals carried by the signal conductors. In some embodiments, the current flow paths may be adjacent the signal conductors, offset in a transverse direction from an axis of a pair of conductors. Such paths may be created by tabs extending from connector shields. A compliant conductive member of the compliant shield may contact the tabs and a conductive pad on a surface of the PCB. Shadow vias, running from the surface pad to internal ground structures may be positioned adjacent the tip of the tabs.
    Type: Application
    Filed: May 25, 2022
    Publication date: October 13, 2022
    Applicant: Amphenol Corporation
    Inventors: Daniel B. Provencher, Mark W. Gailus, David Manter, Vysakh Sivarajan
  • Patent number: 11387609
    Abstract: An interconnection system with a compliant shield between a connector and a substrate such as a PCB. The compliant shield may provide current flow paths between shields internal to the connector and ground structures of the PCB. The connector, compliant shield and PCB may be configured to provide current flow in locations relative to signal conductors that provide desirable signal integrity for signals carried by the signal conductors. In some embodiments, the current flow paths may be adjacent the signal conductors, offset in a transverse direction from an axis of a pair of conductors. Such paths may be created by tabs extending from connector shields. A compliant conductive member of the compliant shield may contact the tabs and a conductive pad on a surface of the PCB. Shadow vias, running from the surface pad to internal ground structures may be positioned adjacent the tip of the tabs.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: July 12, 2022
    Assignee: Amphenol Corporation
    Inventors: Daniel B. Provencher, Mark W. Gailus, David Manter, Vysakh Sivarajan
  • Publication number: 20220173534
    Abstract: A modular high speed, high density electrical connector configurable for use in multiple configurations, including a direct attach orthogonal configuration. The connector is assembled with modules that include shielded pairs of signal conductors with mating ends that are rotated approximately 45 degrees with respect to intermediate portions of the signal conductors. The connector may have a mating interface with receptacles in one connector and pins in the mating connector. The pins may be small diameter and may be implemented with superelastic wires so as to resist damage despite having very small effective diameter. A compact mating interface resulting from small diameter mating contact portions may enable other portions of the connector, including the shielding surrounding the signal conductors to be smaller, which may raise the resonant frequency of the connector and extend its bandwidth.
    Type: Application
    Filed: February 17, 2022
    Publication date: June 2, 2022
    Applicant: Amphenol Corporation
    Inventors: Marc B. Cartier, JR., John Robert Dunham, Mark W. Gailus, John Pitten
  • Patent number: 11336060
    Abstract: An electrical connector electrically connects a first printed circuit board and a second printed circuit board, where the electrical connector includes: (a) an insulative housing; (b) a plurality of signal conductors, with at least a portion of each of the plurality of signal conductors disposed within the insulative housing; (c) each of the plurality of signal conductors having a first contact end, a second contact end and an intermediate portion therebetween; and (d) a passive circuit element electrically connected to the intermediate portion of each of the plurality of signal conductors, where the passive circuit element is housed in an insulative package and includes at least a capacitor or an inductor.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: May 17, 2022
    Assignee: AMPHENOL CORPORATION
    Inventors: Leon Khilchenko, Mark W. Gailus
  • Patent number: 11289830
    Abstract: A modular high speed, high density electrical connector configurable for use in multiple configurations, including a direct attach orthogonal configuration. The connector is assembled with modules that include shielded pairs of signal conductors with mating ends that are rotated approximately 45 degrees with respect to intermediate portions of the signal conductors. The connector may have a mating interface with receptacles in one connector and pins in the mating connector. The pins may be small diameter and may be implemented with superelastic wires so as to resist damage despite having very small effective diameter. A compact mating interface resulting from small diameter mating contact portions may enable other portions of the connector, including the shielding surrounding the signal conductors to be smaller, which may raise the resonant frequency of the connector and extend its bandwidth.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: March 29, 2022
    Assignee: Amphenol Corporation
    Inventors: Marc B. Cartier, Jr., John Robert Dunham, Mark W. Gailus, John Pitten
  • Publication number: 20220013962
    Abstract: A modular electrical connector facilitates low loss connections to components on a printed circuit board. A portion is of the connector is formed of one or more first type units with conductive elements designed to be attached to a printed circuit board. Signals passing through those units may be routed to components on the printed circuit board through traces in the board. One or more second type units may be integrated with the connector. Those units may be designed for attachment to a cable, which may provide signal paths to a location on the printed circuit board near relatively distant components.
    Type: Application
    Filed: June 21, 2021
    Publication date: January 13, 2022
    Applicant: Amphenol Corporation
    Inventors: Mark W. Gailus, Allan Astbury, David Manter, Marc B. Cartier, JR., Vysakh Sivarajan, John Robert Dunham
  • Publication number: 20210359450
    Abstract: Embodiments related to electrical connectors including superelastic components are described. The high elastic limit of superelastic materials compared to conventional connector materials may allow for designs which provide reliable connections and high frequency operation. Superelastic components also may enable connector designs with higher densities of connections. In some embodiments, a connector includes one or more superelastic elongated members forming the mating contacts of the connector. The superelastic elongated members deform within one or more conductive receptacles to generate a suitable contact force. The conductive receptacles may include a plurality of protrusions arranged to deflect the superelastic elongated members during mating. A superelastic component may also be provided in a receiving portion of a connector, and may form a portion of a conductive receptacle.
    Type: Application
    Filed: July 30, 2021
    Publication date: November 18, 2021
    Applicant: Amphenol Corporation
    Inventors: Donald A. Girard, JR., Tom Pitten, Mark W. Gailus, Marc B. Cartier, JR., David Levine
  • Publication number: 20210336363
    Abstract: A broadside coupled connector assembly has two sets of conductors, each separate planes. By providing the same path lengths, there is no skew between the conductors of the differential pair and the impedance of those conductors is identical. The conductor sets are formed by embedding the first set of conductors in an insulated housing having a top surface with channels. The second set of conductors is placed within the channels so that no air gaps form between the two sets of conductors. A second insulated housing is filled over the second set of conductors and into the channels to form a completed wafer. The ends of the conductors are received in a blade housing. Differential and ground pairs of blades have one end that extends through the bottom of the housing having a small footprint. An opposite end of the pairs of blades diverge to connect with the wafers.
    Type: Application
    Filed: February 17, 2021
    Publication date: October 28, 2021
    Inventors: Thomas S. Cohen, Huilin Ren, Marc B. Cartier, JR., Trent K. Do, Mark W. Gailus
  • Publication number: 20210315102
    Abstract: A printed circuit board includes a plurality of layers including conductive layers separated by dielectric layers; and at least one via configured for solder attachment to a connector lead of a surface mount connector, the at least one via including a conductive element that extends from an upper surface of the printed circuit board through one or more of the plurality of layers, the conductive element having a recess in a surface thereof. The recess is configured to receive a tip portion of the connector lead of the surface mount connector. The printed circuit board may have via patterns including signal vias and ground vias.
    Type: Application
    Filed: June 15, 2021
    Publication date: October 7, 2021
    Applicant: Amphenol Corporation
    Inventors: Marc B. Cartier, JR., Mark W. Gailus, Tom Pitten, Donald A. Girard, JR., Huilin Ren
  • Patent number: 11108180
    Abstract: Electrical connectors including superelastic components. The high elastic limit of superelastic materials compared to conventional connector materials may allow for designs which provide reliable connections and high frequency operation. Superelastic components also may enable connector designs with higher densities of connections. A connector can include one or more superelastic elongated members forming the mating contacts of the connector. The superelastic elongated members may deform within one or more conductive receptacles to generate a suitable contact force. The conductive receptacles may include a plurality of protrusions arranged to deflect the superelastic elongated members during mating. A superelastic component may also be provided in a receiving portion of a connector, and may form a portion of a conductive receptacle.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: August 31, 2021
    Assignee: Amphenol Corporation
    Inventors: Donald A. Girard, Tom Pitten, Mark W. Gailus, Marc B. Cartier, Jr., David Levine
  • Publication number: 20210257788
    Abstract: An electrical interconnect for passing high speed signals through an electronic system with a high density of signals and high signal integrity. The interconnect includes an electrical connector and a transition portion of a printed circuit board to which the connector is mounted. Signal conductors are connected to pads on the surface of the PCB using edge-to-pad mounting. The pads align with intermediate portions of the signal conductors such that transitions within the connector that could degrade signal integrity are avoided. The signal conductors may be positioned as individually shielded broadside coupled pairs extending in rows within the connector. Surface traces on the PCB connect the pads to signal vias aligned for vertical routing out of the connector footprint. Ground planes underlying the surface traces facilitate a transition from the signal paths in the connector to those in the PCB with low mode conversion avoiding resonances in the connector shields.
    Type: Application
    Filed: January 27, 2021
    Publication date: August 19, 2021
    Applicant: Amphenol Corporation
    Inventors: Marc B. Cartier, JR., John Robert Dunham, Mark W. Gailus, David Levine, Allan Astbury, Vysakh Sivarajan, Daniel B. Provencher, Eric Leo
  • Publication number: 20210234290
    Abstract: An electrical interconnect for passing high speed signals through an electronic system with a high density of signals and high signal integrity. The interconnect includes an electrical connector and a transition portion of a printed circuit board to which the connector is mounted. Signal conductors are connected to pads on the surface of the PCB using edge-to-pad mounting. The pads align with intermediate portions of the signal conductors such that transitions within the connector that could degrade signal integrity are avoided. The signal conductors may be positioned as individually shielded broadside coupled pairs extending in rows within the connector. Surface traces on the PCB connect the pads to signal vias aligned for vertical routing out of the connector footprint. Ground planes underlying the surface traces facilitate a transition from the signal paths in the connector to those in the PCB with low mode conversion avoiding resonances in the connector shields.
    Type: Application
    Filed: January 27, 2021
    Publication date: July 29, 2021
    Applicant: Amphenol Corporation
    Inventors: John Robert Dunham, Marc B. Cartier, JR., Mark W. Gailus, David Levine, Allan Astbury, Vysakh Sivarajan, Daniel B. Provencher, Eric Leo
  • Patent number: 11070006
    Abstract: A modular electrical connector facilitates low loss connections to components on a printed circuit board. A portion is of the connector is formed of one or more first type units with conductive elements designed to be attached to a printed circuit board. Signals passing through those units may be routed to components on the printed circuit board through traces in the board. One or more second type units may be integrated with the connector. Those units may be designed for attachment to a cable, which may provide signal paths to a location on the printed circuit board near relatively distant components.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: July 20, 2021
    Assignee: Amphenol Corporation
    Inventors: Mark W. Gailus, Allan Astbury, David Manter, Marc B. Cartier, Jr., Vysakh Sivarajan, John Robert Dunham
  • Patent number: D948454
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: April 12, 2022
    Assignee: Amphenol Corporation
    Inventors: Marc B. Cartier, Jr., Mark W. Gailus, David Levine, Vysakh Sivarajan, John Robert Dunham, John Pitten
  • Patent number: D953275
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: May 31, 2022
    Assignee: Amphenol Corporation
    Inventors: Marc B. Cartier, Jr., Mark W. Gailus, David Levine, Vysakh Sivarajan, John Robert Dunham, John Pitten