Patents by Inventor Markus Hehn

Markus Hehn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240135703
    Abstract: The invention relates to a method for determining a state xk (9) of a localizing apparatus at a time tk, the state xk being a realization of a state random variable Xk.
    Type: Application
    Filed: December 13, 2021
    Publication date: April 25, 2024
    Inventors: Markus HEHN, Lino WIDMER
  • Publication number: 20240127576
    Abstract: According to the present invention there is provide a method a method for matching features in an image with landmark representations in a landmark map, the method comprising: providing at least one image; extracting from the image one or more features; providing a landmark map comprising a list of landmark representations, wherein each landmark representation is a representation of a respective physical landmark; creating a plurality of policies, each policy comprising at least one matching decision of the feature and the landmark representation, each matching decision having a stage cost; assigning a policy cost to each of the policies, wherein the policy cost is a function of the stage costs of the matching decisions the policy is comprised of; selecting from the collection of the policies the policy with the desired policy cost. There is further provided an assembly having a processor which is configured to carry out said method.
    Type: Application
    Filed: October 16, 2020
    Publication date: April 18, 2024
    Inventors: Markus HEHN, Fabio ROSSETTO, Luciano BEFFA
  • Patent number: 11932397
    Abstract: According to the present invention there is provided a method of taking a measurement using a sensor mounted on an aerial vehicle, the aerial vehicle having one or more propellers and one or more motors which are selectively operable to drive the one or more propellers to rotate to cause the vehicle to fly, and a sensor mounted on the aerial vehicle, the method comprising the steps of, operating the one or more motors to drive the one or more propellers to cause the vehicle to fly; at a first time instant, slowing down or turning off said one or more motors; while the one or more motors are slowed down or turned off, taking a measurement using said sensor; at a second time instant, which is after the measurement has been taken using the sensor, operating the one or more motors again to drive the one or more propellers to cause the vehicle to fly. There is further provided a corresponding aerial vehicle.
    Type: Grant
    Filed: September 15, 2022
    Date of Patent: March 19, 2024
    Assignee: Verity AG
    Inventors: Markus Hehn, Luciano Beffa
  • Publication number: 20240078686
    Abstract: The invention relates to a method for determining a state xk (8) of a camera (11) at a time tk, the state xk (8) being a realization of a state random variable Xk, wherein the state is related to a state-space model of a movement of the camera (11).
    Type: Application
    Filed: December 13, 2021
    Publication date: March 7, 2024
    Inventors: Markus HEHN, Fabio ROSSETTO
  • Patent number: 11924719
    Abstract: Localization systems and methods for transmitting timestampable localization signals from anchors according to one or more transmission schedules. The transmission schedules may be generated and updated to achieve desired positioning performance. For example, one or more anchors may transmit localization signals at a different rate than other anchors, the anchor transmission order can be changed, and the signals can partially overlap. In addition, different transmission parameters may be used to transmit two localization signals at the same time without interference. A self-localizing apparatus is able to receive the localization signals and determine its position. The self-localizing apparatus may have a configurable receiver that can select to receive one of multiple available localization signals. The self-localizing apparatuses may have a pair of receivers able to receive two localization signals at the same time.
    Type: Grant
    Filed: January 20, 2023
    Date of Patent: March 5, 2024
    Assignee: Verity AG
    Inventors: Luca Gherardi, Raffaello D'Andrea, Markus Hehn, Markus Waibel
  • Publication number: 20240074018
    Abstract: The invention relates to a method for controlling a light source (7), the method using (a) at least one pose estimate (1) of a camera (8) configured to capture one or more images of a scene of interest (13) which comprises at least one landmark (9), as said light source is operated to emit light which illuminates said scene of interest, (b) a landmark map (2) comprising at least 3D location information of a plurality of landmarks comprising the at least one landmark in the scene of interest, (c) an illumination model (3) describing a relationship between an emission illumination power and reflection illumination power, wherein said emission illumination power is the power of light emitted by the light source (7) to illuminate said scene of interest, and said reflection illumination power is the illumination power of light reflected by one or more landmarks in said scene of interest and received by the camera, and (d) a predefined threshold reflection illumination power (4).
    Type: Application
    Filed: December 13, 2021
    Publication date: February 29, 2024
    Inventors: Markus HEHN, Luciano BEFFA
  • Publication number: 20240069574
    Abstract: A self-localizing apparatus uses timestampable signals transmitted by transceivers that are a part of a distributed localization system to compute its position relative to the transceivers. Transceivers and self-localizing apparatuses are arranged for highly accurate timestamping using digital and analog reception and transmission electronics as well as one or more highly accurate clocks, compensation units, localization units, position calibration units, scheduling units, or synchronization units. Transceivers and self-localizing apparatuses are further arranged to allow full scalability in the number of self-localizing apparatuses and to allow robust self-localization with latencies and update rates useful for high performance applications such as autonomous mobile robot control.
    Type: Application
    Filed: August 1, 2023
    Publication date: February 29, 2024
    Inventors: Markus Hehn, Markus Waibel, Raffaello D'Andrea
  • Publication number: 20240070914
    Abstract: The invention relates to a method for determining a state xk (7) of a camera (11) at a time tk, the state xk (7) being a realization of a state random variable Xk, wherein the state is related to a state-space model of a movement of the camera (11).
    Type: Application
    Filed: December 13, 2021
    Publication date: February 29, 2024
    Inventors: Markus HEHN, Lino WIDMER, Fabio ROSSETTO
  • Publication number: 20240062412
    Abstract: The present invention relates to a method for identifying at least one candidate feature in an image of a scene of interest captured by a camera, and to a method for capturing an image, with spatial variations in image sharpness, of a scene of interest by a camera, and to a method for determining a state xk of a camera at a time tk, as well as to an assembly and two computer program products.
    Type: Application
    Filed: December 13, 2021
    Publication date: February 22, 2024
    Inventors: Markus HEHN, Luciano BEFFA
  • Publication number: 20240036572
    Abstract: A system comprising, a plurality of unmanned aerial vehicles and a single controller for controlling said plurality of unmanned aerial vehicles, wherein the single controller is configured such that it can broadcast a command to all of the plurality of unmanned aerial vehicles so that each of the plurality of unmanned aerial vehicles receive the same command; and wherein each of the unmanned aerial vehicles comprise a memory which stores a plurality of predefined flight paths each of which is assigned to a respective command; and wherein each of the unmanned aerial vehicles comprise a processor which can, (i) receive a command which has been broadcasted by the single controller to said plurality of unmanned aerial vehicles, (ii) retrieve from the memory of that aerial vehicle the flight path which is assigned in the memory to that command, and (iii) operate the aerial vehicle to follow the retrieved flight path.
    Type: Application
    Filed: September 29, 2023
    Publication date: February 1, 2024
    Inventors: Federico Augugliaro, Markus Waibel, Markus Hehn, Raffaello D'Andrea, Luca Gherardi
  • Patent number: 11814185
    Abstract: According to the present invention there is provided an aerial vehicle that is operable to fly, the aerial vehicle having at least a first and second subsystem that are operably connected, wherein the first subsystem comprises a first flight module, first one or more effectors that are selectively operable to generate a first force sufficient to cause the aerial vehicle to fly; and the second subsystem comprises a second flight module, second one or more effectors that are selectively operable to generate a second force sufficient to cause the aerial vehicle to fly; such that the first or second subsystem can be selectively used to fly the aerial vehicle not relying on the one or more effectors of the other subsystem. There is further provided a corresponding method for controlling an aerial vehicle.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: November 14, 2023
    Assignee: Verity AG
    Inventors: Markus Hehn, Markus Waibel, Luca Gherardi, Raffaello D'Andrea
  • Patent number: 11809177
    Abstract: A system comprising, a plurality of unmanned aerial vehicles and a single controller for controlling said plurality of unmanned aerial vehicles, wherein the single controller is configured such that it can broadcast a command to all of the plurality of unmanned aerial vehicles so that each of the plurality of unmanned aerial vehicles receive the same command; and wherein each of the unmanned aerial vehicles comprise a memory which stores a plurality of predefined flight paths each of which is assigned to a respective command; and wherein each of the unmanned aerial vehicles comprise a processor which can, (i) receive a command which has been broadcasted by the single controller to said plurality of unmanned aerial vehicles, (ii) retrieve from the memory of that aerial vehicle the flight path which is assigned in the memory to that command, and (iii) operate the aerial vehicle to follow the retrieved flight path.
    Type: Grant
    Filed: November 4, 2022
    Date of Patent: November 7, 2023
    Assignee: Verity AG
    Inventors: Federico Augugliaro, Markus Waibel, Markus Hehn, Raffaello D'Andrea, Luca Gherardi
  • Publication number: 20230333572
    Abstract: The system receives position information in both an internal coordinate frame and an external coordinate frame. The system uses a comparison of position information in these flames to determine orientation information. The system determines one or more orientation hypotheses, and analyzes the position information based on these hypotheses. The system may include on-board accelerometers, gyroscopes, or both that provide the measurements in the internal coordinate frame. These measurements may be integrated otherwise processed to determine position, velocity, or both. Measurements in the external frame are provided by GPS sensors or other positioning systems. Position information is transformed to a common coordinate frame, and an error metric is determined. Based on the error metric, the system estimates a likelihood metric for each hypothesis, and determines a resulting hypothesis based on the maximum likelihood or a combination of likelihoods.
    Type: Application
    Filed: June 16, 2023
    Publication date: October 19, 2023
    Inventors: Luciano Beffa, Markus Hehn
  • Publication number: 20230249819
    Abstract: A flying machine storage container is provided that comprises multiple charging stations and a clamping mechanism. The clamping mechanism is configured to secure flying machines in the charging stations and securely close charging circuits between the storage container and the flying machines. A system for launching flying machines is also provided. The system comprises two regions and a transition region between the two regions. The two regions each constrain the positioning of a flying machine and the transition region enables a flying machine to move from the first region to the second region to reach an exit. A flying machine having sufficient performance capabilities will be able to successfully launch. Centralized and decentralized communication architectures are also provided for communicating data between a central control system, multiple storage containers, and multiple stored flying machines stored at each of the storage containers.
    Type: Application
    Filed: April 13, 2023
    Publication date: August 10, 2023
    Inventors: Federico Augugliaro, Philipp Reist, Markus Waibel, Markus Hehn
  • Patent number: 11681303
    Abstract: The system receives position information in both an internal coordinate frame and an external coordinate frame. The system uses a comparison of position information in these frames to determine orientation information. The system determines one or more orientation hypotheses, and analyzes the position information based on these hypotheses. The system may include on-board accelerometers, gyroscopes, or both that provide the measurements in the internal coordinate frame. These measurements may be integrated or otherwise processed to determine position, velocity, or both. Measurements in the external frame are provided by GPS sensors or other positioning systems. Position information is transformed to a common coordinate frame, and an error metric is determined. Based on the error metric, the system estimates a likelihood metric for each hypothesis, and determines a resulting hypothesis based on the maximum likelihood or a combination of likelihoods.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: June 20, 2023
    Assignee: Verity AG
    Inventors: Luciano Beffa, Markus Hehn
  • Patent number: 11643205
    Abstract: A flying machine storage container is provided that comprises multiple charging stations and a clamping mechanism. The clamping mechanism is configured to secure flying machines in the charging stations and securely close charging circuits between the storage container and the flying machines. A system for launching flying machines is also provided. The system comprises two regions and a transition region between the two regions. The two regions each constrain the positioning of a flying machine and the transition region enables a flying machine to move from the first region to the second region to reach an exit. A flying machine having sufficient performance capabilities will be able to successfully launch. Centralized and decentralized communication architectures are also provided for communicating data between a central control system, multiple storage containers, and multiple stored flying machines stored at each of the storage containers.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: May 9, 2023
    Assignee: VERITY AG
    Inventors: Federico Augugliaro, Raffaello D'Andrea, Markus Hehn, Mark W. Mueller, Philipp Reist, Markus Waibel
  • Patent number: 11595795
    Abstract: Localization systems and methods for transmitting timestampable localization signals from anchors according to one or more transmission schedules. The transmission schedules may be generated and updated to achieve desired positioning performance. For example, one or more anchors may transmit localization signals at a different rate than other anchors, the anchor transmission order can be changed, and the signals can partially overlap. In addition, different transmission parameters may be used to transmit two localization signals at the same time without interference. A self-localizing apparatus is able to receive the localization signals and determine its position. The self-localizing apparatus may have a configurable receiver that can select to receive one of multiple available localization signals. The self-localizing apparatuses may have a pair of receivers able to receive two localization signals at the same time.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: February 28, 2023
    Assignee: Verity AG
    Inventors: Luca Gherardi, Raffaello D'Andrea, Markus Hehn, Markus Waibel
  • Publication number: 20230059856
    Abstract: A system comprising, a plurality of unmanned aerial vehicles and a single controller for controlling said plurality of unmanned aerial vehicles, wherein the single controller is configured such that it can broadcast a command to all of the plurality of unmanned aerial vehicles so that each of the plurality of unmanned aerial vehicles receive the same command; and wherein each of the unmanned aerial vehicles comprise a memory which stores a plurality of predefined flight paths each of which is assigned to a respective command; and wherein each of the unmanned aerial vehicles comprise a processor which can, (i) receive a command which has been broadcasted by the single controller to said plurality of unmanned aerial vehicles, (ii) retrieve from the memory of that aerial vehicle the flight path which is assigned in the memory to that command, and (iii) operate the aerial vehicle to follow the retrieved flight path.
    Type: Application
    Filed: November 4, 2022
    Publication date: February 23, 2023
    Inventors: Federico Augugliaro, Markus Waibel, Markus Hehn, Raffaello D'Andrea, Luca Gherardi
  • Publication number: 20230002049
    Abstract: According to the present invention there is provided a method of taking a measurement using a sensor mounted on an aerial vehicle, the aerial vehicle having one or more propellers and one or more motors which are selectively operable to drive the one or more propellers to rotate to cause the vehicle to fly, and a sensor mounted on the aerial vehicle, the method comprising the steps of, operating the one or more motors to drive the one or more propellers to cause the vehicle to fly; at a first time instant, slowing down or turning off said one or more motors; while the one or more motors are slowed down or turned off, taking a measurement using said sensor; at a second time instant, which is after the measurement has been taken using the sensor, operating the one or more motors again to drive the one or more propellers to cause the vehicle to fly. There is further provided a corresponding aerial vehicle.
    Type: Application
    Filed: September 15, 2022
    Publication date: January 5, 2023
    Inventors: Markus HEHN, Luciano BEFFA
  • Patent number: 11526164
    Abstract: A system comprising, a plurality of unmanned aerial vehicles and a single controller for controlling said plurality of unmanned aerial vehicles, wherein the single controller is configured such that it can broadcast a command to all of the plurality of unmanned aerial vehicles so that each of the plurality of unmanned aerial vehicles receive the same command; and wherein each of the unmanned aerial vehicles comprise a memory which stores a plurality of predefined flight paths each of which is assigned to a respective command; and wherein each of the unmanned aerial vehicles comprise a processor which can, (i) receive a command which has been broadcasted by the single controller to said plurality of unmanned aerial vehicles, (ii) retrieve from the memory of that aerial vehicle the flight path which is assigned in the memory to that command, and (iii) operate the aerial vehicle to follow the retrieved flight path.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: December 13, 2022
    Assignee: Verity AG
    Inventors: Federico Augugliaro, Markus Waibel, Markus Hehn, Raffaello D'Andrea, Luca Gherardi