Patents by Inventor Markus M. Enzelberger

Markus M. Enzelberger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8936764
    Abstract: The present invention provides microfluidic devices and methods using the same in various types of thermal cycling reactions. Certain devices include a rotary microfluidic channel and a plurality of temperature regions at different locations along the rotary microfluidic channel at which temperature is regulated. Solution can be repeatedly passed through the temperature regions such that the solution is exposed to different temperatures. Other microfluidic devices include an array of reaction chambers formed by intersecting vertical and horizontal flow channels, with the ability to regulate temperature at the reaction chambers. The microfluidic devices can be used to conduct a number of different analyzes, including various primer extension reactions and nucleic acid amplification reactions.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: January 20, 2015
    Assignee: California Institute of Technology
    Inventors: Markus M. Enzelberger, Carl L. Hansen, Jian Liu, Stephen R. Quake, Chiem Ma
  • Publication number: 20140141498
    Abstract: The present invention provides microfluidic devices and methods using the same in various types of thermal cycling reactions. Certaom devices include a rotary microfluidic channel and a plurality of temperature regions at different locations along the rotary microfluidic channel at which temperature is regulated. Solution can be repeatedly passed through the temperature regions such that the solution is exposed to different temperatures. Other microfluidic devices include an array of reaction chambers formed by intersecting vertical and horizontal flow channels, with the ability to regulate temperature at the reaction chambers. The microfluidic devices can be used to conduct a number of different analyses, including various primer extension reactions and nucleic acid amplification reactions.
    Type: Application
    Filed: July 2, 2013
    Publication date: May 22, 2014
    Applicant: California Institute of Technology
    Inventors: Markus M. Enzelberger, Carl L. Hansen, Jian Liu, Stephen R. Quake, Chiem Ma
  • Patent number: 8656958
    Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: February 25, 2014
    Assignee: California Institue of Technology
    Inventors: Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer, Stephen R. Quake, Markus M. Enzelberger, Mark L. Adams, Carl L. Hansen
  • Patent number: 8486636
    Abstract: The present invention provides microfluidic devices and methods using the same in various types of thermal cycling reactions. Certain devices include a rotary microfluidic channel and a plurality of temperature regions at different locations along the rotary microfluidic channel at which temperature is regulated. Solution can be repeatedly passed through the temperature regions such that the solution is exposed to different temperatures. Other microfluidic devices include an array of reaction chambers formed by intersecting vertical and horizontal flow channels, with the ability to regulate temperature at the reaction chambers. The microfluidic devices can be used to conduct a number of different analyses, including various primer extension reactions and nucleic acid amplification reactions.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: July 16, 2013
    Assignee: California Institute of Technology
    Inventors: Markus M. Enzelberger, Jian Liu, Stephen R. Quake
  • Publication number: 20120009663
    Abstract: The present invention provides microfluidic devices and methods using the same in various types of thermal cycling reactions. Certain devices include a rotary microfluidic channel and a plurality of temperature regions at different locations along the rotary microfluidic channel at which temperature is regulated. Solution can be repeatedly passed through the temperature regions such that the solution is exposed to different temperatures. Other microfluidic devices include an array of reaction chambers formed by intersecting vertical and horizontal flow channels, with the ability to regulate temperature at the reaction chambers. The microfluidic devices can be used to conduct a number of different analyses, including various primer extension reactions and nucleic acid amplification reactions.
    Type: Application
    Filed: November 16, 2010
    Publication date: January 12, 2012
    Applicant: California Institute of Technology
    Inventors: Markus M. Enzelberger, Carl L. Hansen, Jian Liu, Stephen R. Quake, Chiem Ma
  • Patent number: 7833708
    Abstract: The present invention provides microfluidic devices and methods using the same in various types of thermal cycling reactions. Certaom devices include a rotary microfluidic channel and a plurality of temperature regions at different locations along the rotary microfluidic channel at which temperature is regulated. Solution can be repeatedly passed through the temperature regions such that the solution is exposed to different temperatures. Other microfluidic devices include an array of reaction chambers formed by intersecting vertical and horizontal flow channels, with the ability to regulate temperature at the reaction chambers. The microfluidic devices can be used to conduct a number of different analyses, including various primer extension reactions and nucleic acid amplification reactions.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: November 16, 2010
    Assignee: California Institute of Technology
    Inventors: Markus M. Enzelberger, Carl L. Hansen, Jian Liu, Stephen R. Quake, Chiem Ma
  • Patent number: 7766055
    Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: August 3, 2010
    Assignee: California Institute of Technology
    Inventors: Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer, Stephen R. Quake, Markus M. Enzelberger, Mark L. Adams, Carl L. Hansen
  • Patent number: 7754010
    Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: July 13, 2010
    Assignee: California Institute of Technology
    Inventors: Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer, Stephen R. Quake, Markus M. Enzelberger, Mark L. Adams, Carl L. Hansen
  • Publication number: 20090151422
    Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
    Type: Application
    Filed: October 31, 2007
    Publication date: June 18, 2009
    Applicant: California Institute of Technology
    Inventors: Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer, Stephen R. Quake, Markus M. Enzelberger, Mark L. Adams, Carl L. Hansen
  • Publication number: 20080277005
    Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
    Type: Application
    Filed: March 13, 2007
    Publication date: November 13, 2008
    Applicant: California Institute of Technology
    Inventors: Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer, Stephen R. Quake, Markus M. Enzelberger, Mark L. Adams, Carl L. Hansen
  • Publication number: 20080277007
    Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
    Type: Application
    Filed: November 1, 2007
    Publication date: November 13, 2008
    Applicant: California Institute of Technology
    Inventors: Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer, Stephen R. Quake, Markus M. Enzelberger, Mark L. Adams, Carl L. Hansen
  • Publication number: 20080236669
    Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
    Type: Application
    Filed: October 31, 2007
    Publication date: October 2, 2008
    Applicant: California Institute of Technology
    Inventors: Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer, Stephen R. Quake, Markus M. Enzelberger, Mark L. Adams, Carl L. Hansen
  • Publication number: 20080220216
    Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
    Type: Application
    Filed: October 31, 2007
    Publication date: September 11, 2008
    Applicant: California Institute of Technology
    Inventors: Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer, Stephen R. Quake, Markus M. Enzelberger, Mark L. Adams, Carl L. Hansen
  • Publication number: 20080173365
    Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
    Type: Application
    Filed: October 31, 2007
    Publication date: July 24, 2008
    Applicant: California Institute of Technology
    Inventors: Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer, Stephen R. Quake, Markus M. Enzelberger, Mark L. Adams, Carl L. Hansen
  • Patent number: 7232109
    Abstract: Valve structures formed in elastomer material are electrostatically actuated by applying voltage to a flexible, electrically conductive wire pattern. An actuation force generated between the patterned wire structure and an electrode result in closure of a flow channel formed in elastomer material underlying the wire. In one embodiment of a valve structure in accordance with the present invention, the wire structure is patterned by lithography and etching of a copper/polyimide laminate, with an underlying gold plate positioned on the opposite side of the flow channel serving as an electrode. In an alternative embodiment, a first wire structure is patterned by physically cutting out a first pattern of strips from an Aluminum/Mylar(®) laminate sheet. A second patterned wire structure serving as the electrode is formed by the same method, and positioned on the opposite side of a control channel.
    Type: Grant
    Filed: October 23, 2001
    Date of Patent: June 19, 2007
    Assignee: California Institute of Technology
    Inventors: B. Scott Driggs, Markus M. Enzelberger, Stephen R. Quake
  • Patent number: 6960437
    Abstract: The present invention provides microfluidic devices and methods using the same in various types of thermal cycling reactions. Certaom devices include a rotary microfluidic channel and a plurality of temperature regions at different locations along the rotary microfluidic channel at which temperature is regulated. Solution can be repeatedly passed through the temperature regions such that the solution is exposed to different temperatures. Other microfluidic devices include an array of reaction chambers formed by intersecting vertical and horizontal flow channels, with the ability to regulate temperature at the reaction chambers. The microfluidic devices can be used to conduct a number of different analyses, including various primer extension reactions and nucleic acid amplification reactions.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: November 1, 2005
    Assignee: California Institute of Technology
    Inventors: Markus M. Enzelberger, Jian Liu, Stephen R. Quake
  • Patent number: 6899137
    Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
    Type: Grant
    Filed: April 6, 2001
    Date of Patent: May 31, 2005
    Assignee: California Institute of Technology
    Inventors: Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer, Stephen R. Quake, Markus M. Enzelberger, Mark L. Adams, Carl L. Hansen
  • Publication number: 20030008308
    Abstract: The present invention provides microfluidic devices and methods using the same in various types of thermal cycling reactions. Certaom devices include a rotary microfluidic channel and a plurality of temperature regions at different locations along the rotary microfluidic channel at which temperature is regulated. Solution can be repeatedly passed through the temperature regions such that the solution is exposed to different temperatures. Other microfluidic devices include an array of reaction chambers formed by intersecting vertical and horizontal flow channels, with the ability to regulate temperature at the reaction chambers. The microfluidic devices can be used to conduct a number of different analyses, including various primer extension reactions and nucleic acid amplification reactions.
    Type: Application
    Filed: April 5, 2002
    Publication date: January 9, 2003
    Applicant: California Institute of Technology
    Inventors: Markus M. Enzelberger, Carl L. Hansen, Jian Liu, Stephen R. Quake, Chiem Ma
  • Publication number: 20020109114
    Abstract: Valve structures formed in elastomer material are electrostatically actuated by applying voltage to a flexible, electrically conductive wire pattern. An actuation force generated between the patterned wire structure and an electrode result in closure of a flow channel formed in elastomer material underlying the wire. In one embodiment of a valve structure in accordance with the present invention, the wire structure is patterned by lithography and etching of a copper/polyimide laminate, with an underlying gold plate positioned on the opposite side of the flow channel serving as an electrode. In an alternative embodiment, a first wire structure is patterned by physically cutting out a first pattern of strips from an Aluminum/Mylar laminate sheet. A second patterned wire structure serving as the electrode is formed by the same method, and positioned on the opposite side of a control channel.
    Type: Application
    Filed: October 23, 2001
    Publication date: August 15, 2002
    Applicant: California Institute of Technology
    Inventors: B. Scott Driggs, Markus M. Enzelberger, Stephen R. Quake