Patents by Inventor Markus Meissner

Markus Meissner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230251380
    Abstract: A method for tracking a retroreflector that is movable in space includes emitting a measurement light beam toward the retroreflector. A tracking control signal is generated as a function of the position of the measurement light beam reflected by the retroreflector on a detector. A status determination is continuously made as to whether the measurement light beam is steerable to follow the retroreflector or whether the retroreflector has been lost. In a search mode based on it having been determined that the retroreflector has been lost, a trajectory estimation is performed based on measurement values to determine an estimated trajectory. A search pattern adapted to the estimated trajectory is created, and the measurement light beam is then moved along a corresponding search path using tracking control signals derived from the estimated trajectory and the search pattern. The search mode is terminated upon a tracking control signal being generatable again.
    Type: Application
    Filed: January 25, 2023
    Publication date: August 10, 2023
    Inventors: Markus MEISSNER, Alexander SCHWANECKE, Nikolas TEKLES, Franz LANGRIEGER
  • Publication number: 20230175917
    Abstract: A sensor assembly for measuring a torsion of a rotor blade of a wind turbine generator system includes a first light source configured to generate light and a first transmitter-side polarizer disposed downstream thereof in a direction of light propagation and configured to generate linearly polarized light as a first transmission light. A second light source is configured to generate unpolarized light as a second transmission light. First and second detector elements are arranged and adapted to receive the first and second transmission light. A first receiver-side polarizer is disposed upstream of the first detector element in the direction of light propagation and a second receiver-side polarizer is disposed upstream of the second detector element in the direction of light propagation. An orientation of a polarization plane of the first receiver-side polarizer and an orientation of a polarization plane of the second receiver-side polarizer are different from one another.
    Type: Application
    Filed: December 7, 2022
    Publication date: June 8, 2023
    Inventors: Markus Meissner, Franz Langrieger, Siegfried Reichhuber, Stefan Gilg
  • Patent number: 11162776
    Abstract: A measuring device includes a movable probe head and an optical position sensing device for determining the spatial position and orientation of the probe head relative to a reference point. The position sensing device includes at least three position determination modules, arranged as a transmission unit or as a receiving unit, at least one position determination module being situated on the probe head, and at least one position determination module being situated at the reference point. A transmission unit has transmission unit marking element(s). A receiving unit includes optoelectronic detector(s) and receiving unit marking element(s), positioned in a defined spatial relationship relative to the optoelectronic detector. Visual contacts exist between at least some of the position determination modules. The position determination module on the probe head and the position determination module at the reference point are connected by at least one uninterrupted chain of visual contacts.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: November 2, 2021
    Assignee: DR. JOHANNES HEIDENHAIN GmbH
    Inventors: Wolfgang Holzapfel, Markus Meißner, Michael Stepputat, Robert Kraus, Manuel Scherer
  • Publication number: 20200348123
    Abstract: A measuring device includes a movable probe head and an optical position sensing device for determining the spatial position and orientation of the probe head relative to a reference point. The position sensing device includes at least three position determination modules, arranged as a transmission unit or as a receiving unit, at least one position determination module being situated on the probe head, and at least one position determination module being situated at the reference point. A transmission unit has transmission unit marking element(s). A receiving unit includes optoelectronic detector(s) and receiving unit marking element(s), positioned in a defined spatial relationship relative to the optoelectronic detector. Visual contacts exist between at least some of the position determination modules. The position determination module on the probe head and the position determination module at the reference point are connected by at least one uninterrupted chain of visual contacts.
    Type: Application
    Filed: May 4, 2020
    Publication date: November 5, 2020
    Applicant: DR. JOHANNES HEIDENHAIN GmbH
    Inventors: Wolfgang HOLZAPFEL, Markus MEISSNER, Michael STEPPUTAT, Robert KRAUS, Manuel SCHERER
  • Patent number: 10746532
    Abstract: An interferometric distance measurement device includes a multiple wavelength light source, supplying a light beam having at least three different wavelengths. An interferometer unit is provided, which splits the light beam into a measuring light beam and a reference light beam. The measuring and reference light beams reflected back by measuring and reference reflectors are superimposed in an interfering manner to form an interference light beam. The interference light beam is split via a detection unit such that, in each instance, a plurality of phase-shifted, partial interference signals result per wavelength. With the aid of a signal processing unit, an absolute position information item regarding the measuring reflector is determined from the partial interference signals of different wavelengths.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: August 18, 2020
    Assignee: DR. JOHANNES HEIDENHAIN GMBH
    Inventors: Markus Meissner, Wolfgang Holzapfel
  • Publication number: 20190041193
    Abstract: A device for interferometric distance measurement includes a multiple wavelength light source, which supplies a light beam having at least three different wavelengths and is configured as a fiber laser, which includes at least three different Bragg gratings, whose grating constants are matched to the wavelengths generated. In addition, an interferometer unit is provided, which splits up the light beam into a measuring light beam and a reference light beam. The measuring light beam propagates in a measuring arm, in the direction of a measuring reflector, and there, it is reflected back; the reference light beam propagates in a reference arm, in the direction of a stationary reference reflector, and there, it is reflected back. The measuring and reference light beams reflected back by the measuring and reference reflectors are superimposed in an interfering manner to form an interference light beam.
    Type: Application
    Filed: July 27, 2018
    Publication date: February 7, 2019
    Inventors: Markus MEISSNER, Wolfgang HOLZAPFEL
  • Patent number: 9921468
    Abstract: An X-Y table with a position-measuring device includes a table which is disposed on a support and is movable on the support so that altogether the table is positionable in a plane parallel to an underlying stationary base. Two groups of scanning heads are disposed on the support. For position measurement in two directions, a respective one of the scanning heads directs light through a respective transmissive scale attached along an edge of the table such that a respective reflective scale, which is stationary relative to a processing tool disposed above the table, reflects the light through the respective transmissive scale back to the respective scanning head. In a central position of the table, the two groups are in positional correspondence with the transmissive scales, and, in either of two edge positions of the table, only one of the two groups is in positional correspondence with the transmissive scales.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: March 20, 2018
    Assignee: DR. JOHANNES HEIDENHAIN GmbH
    Inventors: Wolfgang Holzapfel, Joerg Drescher, Markus Meissner, Ralph Joerger, Bernhard Musch, Thomas Kaelberer
  • Patent number: 9849555
    Abstract: A machine tool includes a stationary machine frame, a tool head, which is able to be positioned relative to the machine frame along three mutually orthogonal translation axes, and a motor-driven tool. The machine tool includes a swivel unit, which can be pivoted about a horizontal swivel axis relative to the machine frame and includes a workpiece positioning device, via which a workpiece can be rotated about an axis of rotation oriented perpendicularly to the swivel axis. The swivel unit is assigned a measuring frame, which is able to be rotated with the swivel unit and is arranged to be thermally and/or mechanically decoupled from the swivel unit and includes components of a first and second position measuring system. Additional components of the first position measuring system are disposed on the tool head, and further components of the second position measuring system are situated on the workpiece positioning device.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: December 26, 2017
    Assignee: DR. JOHANNES HEIDENHAIN GMBH
    Inventor: Markus Meissner
  • Patent number: 9797704
    Abstract: An interferometer includes a light source, a beam splitter, a reference reflector, a measuring reflector, a detection unit, and at least two transparent plane-parallel plates. The beam splitter splits a beam of rays into at least one measuring beam and at least one reference beam. Until being recombined, the measuring beam propagates in a measuring arm, and the reference beam propagates in a reference arm. The reference beam falls at least three times on the reference reflector located in the reference arm. The measuring reflector is disposed in the measuring arm and is joined to an object to be measured, which is movable along a measuring direction relative to the reference reflector. The measuring beam falls at least three times on the measuring reflector. At least one distance signal with regard to the position of the object to be measured is ascertainable from the interfering measuring and reference beams via the detection unit.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: October 24, 2017
    Assignee: DR. JOHANNES HEIDENHAIN GMBH
    Inventor: Markus Meissner
  • Patent number: 9733068
    Abstract: In an optical position measuring device for detecting the relative position of a first measuring standard and a second measuring standard, movable relative to each other along at least one measuring direction, at a splitting grating, a beam bundle emitted by a light source is split up into at least two partial beam bundles. When passing through scanning beam paths, the partial beam bundles undergo different polarization-optical effects. After the differently polarized partial beam bundles are recombined at a combination grating, a plurality of phase-displaced, displacement-dependent scanning signals is able to be generated from the resulting beam bundle. No polarization-optical components are arranged in the scanning beam paths of the partial beam bundles between the splitting and recombination.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: August 15, 2017
    Assignee: DR. JOHANNES HEIDENHAIN GMBH
    Inventors: Jörg Drescher, Wolfgang Holzapfel, Ralph Joerger, Thomas Kälberer, Markus Meissner, Bernhard Musch, Erwin Spanner
  • Patent number: 9664502
    Abstract: An interferential position-measuring device determines a position of an object which is disposed to be movable along a measurement direction. A light source is configured to emit a beam which is split into two sub-beams. One of the sub-beams impinges on an optical functional element on the object. The sub-beams are subsequently superimposed and interfered at a superposition location and a resulting signal beam propagates toward an evaluation unit configured to generate a position-dependent measurement signal from the resulting signal beam. A switching element is disposed in the signal path downstream of the superposition location and upstream of a signal-digitizing device. The switching element is configured to define a specific sampling point in time.
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: May 30, 2017
    Assignee: DR. JOHANNES HEIDENHAIN GMBH
    Inventors: Markus Meissner, Joerg Drescher, Wolfgang Holzapfel
  • Publication number: 20170120410
    Abstract: A machine tool includes a stationary machine frame, a tool head, which is able to be positioned relative to the machine frame along three mutually orthogonal translation axes, and a motor-driven tool. The machine tool includes a swivel unit, which can be pivoted about a horizontal swivel axis relative to the machine frame and includes a workpiece positioning device, via which a workpiece can be rotated about an axis of rotation oriented perpendicularly to the swivel axis. The swivel unit is assigned a measuring frame, which is able to be rotated with the swivel unit and is arranged to be thermally and/or mechanically decoupled from the swivel unit and includes components of a first and second position measuring system. Additional components of the first position measuring system are disposed on the tool head, and further components of the second position measuring system are situated on the workpiece positioning device.
    Type: Application
    Filed: October 24, 2016
    Publication date: May 4, 2017
    Inventor: Markus MEISSNER
  • Publication number: 20170102227
    Abstract: An X-Y table with a position-measuring device includes a table which is disposed on a support and is movable on the support so that altogether the table is positionable in a plane parallel to an underlying stationary base. Two groups of scanning heads are disposed on the support. For position measurement in two directions, a respective one of the scanning heads directs light through a respective transmissive scale attached along an edge of the table such that a respective reflective scale, which is stationary relative to a processing tool disposed above the table, reflects the light through the respective transmissive scale back to the respective scanning head. In a central position of the table, the two groups are in positional correspondence with the transmissive scales, and, in either of two edge positions of the table, only one of the two groups is in positional correspondence with the transmissive scales.
    Type: Application
    Filed: October 12, 2016
    Publication date: April 13, 2017
    Inventors: Wolfgang Holzapfel, Joerg Drescher, Markus Meissner, Ralph Joerger, Bernhard Musch, Thomas Kaelberer
  • Patent number: 9482517
    Abstract: An optical position-measuring device includes a measuring standard as well as a scanning unit movable relative to it along at least one measuring direction, a scanning beam path being formed between the measuring standard and scanning unit and being used to generate displacement-dependent signals. A protective cap is disposed in a manner allowing movement along an axis perpendicular to the measuring-standard plane such that in at least one operating mode, the protective cap for the most part surrounds the scanning beam path between the scanning unit and measuring standard.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: November 1, 2016
    Assignee: Dr. Johannes Heidenhain GmbH
    Inventors: Wolfgang Holzapfel, Jörg Drescher, Markus Meissner
  • Patent number: 9410797
    Abstract: A position-measuring device for detecting the position of two objects movable relative to each other, includes a measuring standard that is joined to one of the two objects, as well as a scanning system for scanning the measuring standard, the scanning system being joined to the other of the two objects. The scanning system permits a simultaneous determination of position along a first lateral shift direction and along a vertical shift direction of the objects. To that end, on the part of the scanning system, two scanning beam paths are formed, in which a group of phase-shifted signals is able to be generated in each case at the output end from interfering partial beams of rays. In addition, via the scanning system, at least a third scanning beam path is formed, by which it is possible to determine position along a second lateral shift direction of the objects.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: August 9, 2016
    Assignee: Dr. Johannes Heidenhain GmbH
    Inventors: Wolfgang Holzapfel, Jörg Drescher, Robert Kellner, Markus Meissner
  • Patent number: 9389065
    Abstract: A position-measuring device, as well as a system having such a position-measuring device, is used for determining the position of a first object relative to a second object, the first and the second object being movable relative to one another along at least two measuring directions. The position-measuring device has an optical unit that is linked to one of the two objects and includes at least one light source, a detector system, as well as further optical elements in a defined configuration. In addition, the position-measuring device includes a measuring standard-reflector unit, which is provided on the other object, and has at least two differently formed regions in one track that are optically scannable by the optical unit for position sensing.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: July 12, 2016
    Assignee: DR. JOHANNES HEIDENHAIN GMBH
    Inventors: Wolfgang Holzapfel, Joerg Drescher, Markus Meissner, Ralph Joerger, Bernhard Musch, Thomas Kaelberer
  • Patent number: 9389100
    Abstract: An optical position measuring instrument including a first scale having a first graduation, wherein the first scale is disposed movable in a first measuring direction, and at a first defined position in the first measuring direction, the first scale includes a spatially limited first marking that differs from the first graduation. The optical position measuring instrument further including a second scale having a second graduation, wherein the second scale is disposed movable in a second measuring direction, and at a second defined position, the second scale includes a second reference marking that is usable for generating at least one reference signal at a reference position of the second scale only if the first scale is located in the first defined position.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: July 12, 2016
    Assignee: DR. JOHANNES HEIDENHAIN GMBH
    Inventors: Wolfgang Holzapfel, Joerg Drescher, Markus Meissner, Ralph Joerger, Bernhard Musch, Thomas Kaelberer
  • Patent number: 9291481
    Abstract: An optical position-measuring device is adapted to detect the position of an object in several spatial degrees of freedom. The object is disposed in a manner allowing it to move at least along a first direction of movement and along a second direction of movement. The position-measuring device includes at least one light source and at least one first and second measuring standard which are located on the object, extend along a first extension direction and a second extension direction and include graduation regions disposed periodically along the first and second extension directions.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: March 22, 2016
    Assignee: DR. JOHANNES HEIDENHAIN GMBH
    Inventors: Markus Meissner, Wolfgang Holzapfel
  • Publication number: 20160033257
    Abstract: An interferometer includes a light source, a beam splitter, a reference reflector, a measuring reflector, a detection unit, and at least two transparent plane-parallel plates. The beam splitter splits a beam of rays into at least one measuring beam and at least one reference beam. Until being recombined, the measuring beam propagates in a measuring arm, and the reference beam propagates in a reference arm. The reference beam falls at least three times on the reference reflector located in the reference arm. The measuring reflector is disposed in the measuring arm and is joined to an object to be measured, which is movable along a measuring direction relative to the reference reflector. The measuring beam falls at least three times on the measuring reflector. At least one distance signal with regard to the position of the object to be measured is ascertainable from the interfering measuring and reference beams via the detection unit.
    Type: Application
    Filed: July 24, 2015
    Publication date: February 4, 2016
    Inventor: Markus Meissner
  • Publication number: 20150354937
    Abstract: An interferential position-measuring device determines a position of an object which is disposed to be movable along a measurement direction. A light source is configured to emit a beam which is split into two sub-beams. One of the sub-beams impinges on an optical functional element on the object. The sub-beams are subsequently superimposed and interfered at a superposition location and a resulting signal beam propagates toward an evaluation unit configured to generate a position-dependent measurement signal from the resulting signal beam. A switching element is disposed in the signal path downstream of the superposition location and upstream of a signal-digitizing device. The switching element is configured to define a specific sampling point in time.
    Type: Application
    Filed: June 3, 2015
    Publication date: December 10, 2015
    Inventors: Markus MEISSNER, Joerg DRESCHER, Wolfgang HOLZAPFEL