Patents by Inventor Markus Schieber

Markus Schieber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240186980
    Abstract: A wafer level package comprises a functional wafer with a first surface, device structures connected to device pads arranged on the first surface. A cap wafer, having an inner and an outer surface, is bonded with the inner surface to the first surface of the functional wafer. A frame structure surrounding the device structures is arranged between functional wafer and cap wafer. Connection posts are connecting the device pads on the first surface to inner cap pads on the inner surface. Electrically conducting vias are guided through the cap wafer connecting inner cap pads on the inner surface and package pads on the outer surface of the cap wafer.
    Type: Application
    Filed: February 12, 2024
    Publication date: June 6, 2024
    Inventor: Markus SCHIEBER
  • Patent number: 11929729
    Abstract: A wafer level package comprises a functional wafer with a first surface, device structures connected to device pads arranged on the first surface. A cap wafer, having an inner and an outer surface, is bonded with the inner surface to the first surface of the functional wafer. A frame structure surrounding the device structures is arranged between functional wafer and cap wafer. Connection posts are connecting the device pads on the first surface to inner cap pads on the inner surface. Electrically conducting vias are guided through the cap wafer connecting inner cap pads on the inner surface and package pads on the outer surface of the cap wafer.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: March 12, 2024
    Assignee: RF360 Singapore Pte. Ltd.
    Inventor: Markus Schieber
  • Publication number: 20210226605
    Abstract: A wafer level package comprises a functional wafer with a first surface, device structures connected to device pads arranged on the first surface. A cap wafer, having an inner and an outer surface, is bonded with the inner surface to the first surface of the functional wafer. A frame structure surrounding the device structures is arranged between functional wafer and cap wafer. Connection posts are connecting the device pads on the first surface to inner cap pads on the inner surface. Electrically conducting vias are guided through the cap wafer connecting inner cap pads on the inner surface and package pads on the outer surface of the cap wafer.
    Type: Application
    Filed: April 16, 2019
    Publication date: July 22, 2021
    Inventor: Markus SCHIEBER
  • Patent number: 10381277
    Abstract: A chip and a method for producing the chip with a plurality of measurement regions which are provided with electrodes for electrically detecting reactions in which, in order to reliably separate the individual measurement regions from one another, a monolayer of a fluorosilane is formed on the chip surface which has strongly hydrophobic properties. Therefore, during spotting with a liquid, the drops of liquid applied by spotting can be reliably prevented from coalescing, and thus, causing mixing of the substances in the drops of liquid which are supposed to be immobilized in the measurement regions.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: August 13, 2019
    Assignee: BOEHRINGER INGELHEIM VETMEDICA GMBH
    Inventors: Markus Schieber, Heinz Schoeder
  • Patent number: 9999120
    Abstract: The invention relates to a circuit carrier (11), comprising a digital circuit, which contains at least two components (12, 14) that are electrically connected to each other (19, 21, 20). Additionally, an electric shield (24) is provided. According to the invention, the electric shield (24) and a conducting path (21) for electrically connecting the components (12, 14) are realized by means of a single layered composite (18). In particular, the electric shield (24) and the conducting path (21) are formed by the same electrically conductive layer, wherein a hole (25) ensures complete electrical insulation of the conducting path (21) from the shield (24). The invention further relates to a method for producing such a circuit carrier.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: June 12, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventors: Florian Poprawa, Markus Schieber, Christina Schindler, Jörg Zapf
  • Patent number: 9887339
    Abstract: An infrared sensor with a microstructure has a multiplicity of sensor rods protruding from a sensor base and arranged axially parallel to one another. Each of the sensor rods is designed as a thermocouple, in that a first rod end, arranged on the sensor base, is electrically connected to an opposite free second rod end by both a first and a second electrically conductive rod element. The two rod elements have a different Seebeck coefficient, and the first rod element is formed as a hollow profile and the second rod element is arranged in the first rod element such that each thermocouple is formed as a single rod with a small standing area on the sensor base.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: February 6, 2018
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Harry Hedler, Ingo Kuehne, Markus Schieber, Joerg Zapf
  • Publication number: 20170301593
    Abstract: A chip and a method for producing the chip with a plurality of measurement regions which are provided with electrodes for electrically detecting reactions in which, in order to reliably separate the individual measurement regions from one another, a monolayer of a fluorosilane is formed on the chip surface which has strongly hydrophobic properties. Therefore, during spotting with a liquid, the drops of liquid applied by spotting can be reliably prevented from coalescing, and thus, causing mixing of the substances in the drops of liquid which are supposed to be immobilized in the measurement regions.
    Type: Application
    Filed: June 21, 2017
    Publication date: October 19, 2017
    Applicant: Boehringer Ingelheim Vetmedica GmbH
    Inventors: Markus Schieber, Heinz Schoeder
  • Patent number: 9735072
    Abstract: A a chip and a method for producing the chip with a plurality of measurement regions which are provided with electrodes for electrically detecting reactions in which, in order to reliably separate the individual measurement regions from one another, a monolayer of a fluorosilane is formed on the chip surface which has strongly hydrophobic properties. Therefore, during spotting with a liquid, the drops of liquid applied by spotting can be reliably prevented from coalescing, and thus, causing mixing of the substances in the drops of liquid which are supposed to be immobilized in the measurement regions.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: August 15, 2017
    Assignee: Boehringer Ingelheim Vetmedica GmbH
    Inventors: Markus Schieber, Heinz Schoeder
  • Publication number: 20170189882
    Abstract: The disclosure pertains to a microstructure for adsorbing/desorbing at least one gas component of a gas supplied to the microstructure. The microstructure includes a semiconductor substrate having a bottom and a top. The microstructure also includes a plurality of micro-channels, extending from the bottom to the top of the semiconductor substrate. A top surface of micro-channel is configured to adsorb and/or desorb the at least one gas component when the gas is passed through the micro-channels.
    Type: Application
    Filed: June 15, 2015
    Publication date: July 6, 2017
    Inventors: Ignaz EISELE, Maximilian FLEISCHER, Harry HEDLER, Markus SCHIEBER, Jörg ZAPF
  • Patent number: 9442379
    Abstract: A microscreen, substantially formed of a photoresist material, is produced by applying a photoresist layer to a support using a liquid photoresist, partially covering the photoresist layer with a mask that defines the structure of the microscreen, exposing the photoresist to radiation, developing the photoresist, and removing the photoresist from the support.
    Type: Grant
    Filed: February 17, 2014
    Date of Patent: September 13, 2016
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Susanne Kornely, Markus Schieber, Daniel Sickert
  • Patent number: 9421500
    Abstract: A method produces a microscreen by providing a support and applying a photoresist layer with a definable thickness to the support. The photoresist is exposed by radiation using a mask that defines the structure of the microscreen. The photoresist is then developed. The thickness of the photoresist layer is selected such that, in a sub-region of the photoresist layer, the radiation used for the exposure penetrates only so slightly that practically no cross-linking of the photoresist takes place.
    Type: Grant
    Filed: February 17, 2014
    Date of Patent: August 23, 2016
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Susanne Kornely, Markus Schieber, Daniel Sickert
  • Publication number: 20160126151
    Abstract: A a chip and a method for producing the chip with a plurality of measurement regions which are provided with electrodes for electrically detecting reactions in which, in order to reliably separate the individual measurement regions from one another, a monolayer of a fluorosilane is formed on the chip surface which has strongly hydrophobic properties. Therefore, during spotting with a liquid, the drops of liquid applied by spotting can be reliably prevented from coalescing, and thus, causing mixing of the substances in the drops of liquid which are supposed to be immobilized in the measurement regions.
    Type: Application
    Filed: May 30, 2014
    Publication date: May 5, 2016
    Applicant: Boehringer Ingelheim Vetmedica GmbH
    Inventors: Markus SCHIEBER, Heinz SCHOEDER
  • Publication number: 20160004162
    Abstract: A microscreen, substantially formed of a photoresist material, is produced by applying a photoresist layer to a support using a liquid photoresist, partially covering the photoresist layer with a mask that defines the structure of the microscreen, exposing the photoresist to radiation, developing the photoresist, and removing the photoresist from the support.
    Type: Application
    Filed: February 17, 2014
    Publication date: January 7, 2016
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Susanne KORNELY, Markus SCHIEBER, Daniel SICKERT
  • Publication number: 20160001231
    Abstract: A method for producing a microscreen is described in which, in a first step, a support is provided, in a second step, a photoresist layer with a definable thickness is applied to the support, in an exposure step, the photoresist is exposed by means of the effect of radiation using a mask that defines the structure of the microscreen, in a development step, the photoresist is developed, characterized in that the thickness of the photoresist layer is selected such that, in a sub-region of the photoresist layer, the radiation used for the exposure penetrates only so slightly that practically no cross-linking of the photoresist takes place.
    Type: Application
    Filed: February 17, 2014
    Publication date: January 7, 2016
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Susanne KORNELY, Markus SCHIEBER, Daniel SICKERT
  • Patent number: 9170226
    Abstract: At least two separate single-crystal silicon layers are formed in a micromechanical substrate which has a diaphragm in a partial region. The diaphragm has a thickness of less than 20 ?m and includes part of a first of the single-crystal silicon layers. The substrate construction also includes a heating element configured to generate a temperature of more than 650° C. in at least part of the diaphragm. The substrate includes at least one diffusion barrier layer that reduces the oxidation of the first single-crystal silicon layer.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: October 27, 2015
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Maximilian Fleischer, Oliver Freudenberg, Harry Hedler, Markus Schieber, Manfred Schreiner, Karl Weidner, Kerstin Wiesner, Jörg Zapf
  • Publication number: 20150048249
    Abstract: An infrared sensor with a microstructure has a multiplicity of sensor rods protruding from a sensor base and arranged axially parallel to one another. Each of the sensor rods is designed as a thermocouple, in that a first rod end, arranged on the sensor base, is electrically connected to an opposite free second rod end by both a first and a second electrically conductive rod element. The two rod elements have a different Seebeck coefficient, and the first rod element is formed as a hollow profile and the second rod element is arranged in the first rod element such that each thermocouple is formed as a single rod with a small standing area on the sensor base.
    Type: Application
    Filed: February 11, 2013
    Publication date: February 19, 2015
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Harry Hedler, Ingo Kuehne, Markus Schieber, Joerg Zapf
  • Publication number: 20150016073
    Abstract: The invention relates to a circuit carrier (11), comprising a digital circuit, which contains at least two components (12, 14) that are electrically connected to each other (19, 21, 20). Additionally, an electric shield (24) is provided. According to the invention, the electric shield (24) and a conducting path (21) for electrically connecting the components (12, 14) are realized by means of a single layered composite (18). In particular, the electric shield (24) and the conducting path (21) are formed by the same electrically conductive layer, wherein a hole (25) ensures complete electrical insulation of the conducting path (21) from the shield (24). The invention further relates to a method for producing such a circuit carrier.
    Type: Application
    Filed: November 27, 2012
    Publication date: January 15, 2015
    Inventors: Florian Poprawa, Markus Schieber, Christina Schindler, Jörg Zapf
  • Publication number: 20140084428
    Abstract: A substrate of an integrated circuit has a first surface and an opposing second surface. A functionalized region is formed at least on the first surface. At least one electrical through-plating is provided as a through-hole which is continuously filled with an electrically conductive material and which runs from the first surface to the second surface through the substrate. To ensure that the through-plating can be reliably produced and is provided in a space-saving manner, the through-hole has at least one gradation on which a transition occurs from a smaller hole cross-section on the side of the first surface to a larger hole cross-section on the side of the second surface.
    Type: Application
    Filed: March 7, 2012
    Publication date: March 27, 2014
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Harry Hedler, Markus Schieber, Stefan Wirth, Jörg Zapf
  • Publication number: 20130264660
    Abstract: At least two separate single-crystal silicon layers are formed in a micromechanical substrate which has a diaphragm in a partial region. The diaphragm has a thickness of less than 20 ?m and includes part of a first of the single-crystal silicon layers. The substrate construction also includes a heating element configured to generate a temperature of more than 650° C. in at least part of the diaphragm. The substrate includes at least one diffusion barrier layer that reduces the oxidation of the first single-crystal silicon layer.
    Type: Application
    Filed: May 23, 2011
    Publication date: October 10, 2013
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Maximilian Fleischer, Oliver Freudenberg, Harry Hedler, Markus Schieber, Manfred Schreiner, Karl Weidner, Kerstin Wiesner, Jörg Zapf