Patents by Inventor Markus Schoeler

Markus Schoeler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230334870
    Abstract: Scene classification method and apparatus for a vehicle sensor system. Feature maps generated from sensor data provided by the vehicle sensor system are received at an input. The feature maps are processed using longitudinal and lateral feature pooling to generate longitudinal and lateral feature pool outputs. Inner products are then generated from the longitudinal and lateral feature pool outputs. The scene is then classified based on the generated inner products.
    Type: Application
    Filed: March 15, 2023
    Publication date: October 19, 2023
    Inventors: Markus Schoeler, Mirko Meuter
  • Publication number: 20220406067
    Abstract: Systems, methods, and apparatus for performing an action when an aggregated confidence measure. Data is received from a first sensor proximate to a particular air space. Data is also received from a second sensor and a third sensor proximate to the particular air space. The data from the first sensor, second sensor, and third sensor are each analyzed to determine respective confidence measures that a UAV is within the particular air space. The first sensor corresponds to a first type of data, the second sensor corresponds to a second type of data, and the third sensor corresponds to a third type of data. The confidence measures from each sensor are aggregated together to generate a combined confidence measure indicating a possible presence of the UAV within in the particular air space. When the combined confidence measure exceeds a threshold, an action is taken.
    Type: Application
    Filed: August 17, 2022
    Publication date: December 22, 2022
    Inventors: Rene SEEBER, Ingo Seebach, Henning Meyer, Markus Schoeler, Kai Baumgart, Christian Scheibe, David Prantl
  • Publication number: 20220383146
    Abstract: A method is provided for training a machine-learning algorithm which relies on primary data captured by at least one primary sensor. Labels are identified based on auxiliary data provided by at least one auxiliary sensor. A care attribute or a no-care attribute is assigned to each label by determining a perception capability of the primary sensor for the label based on the primary data and based on the auxiliary data. Model predictions for the labels are generated via the machine-learning algorithm. A loss function is defined for the model predictions. Negative contributions to the loss function are permitted for all labels. Positive contributions to the loss function are permitted for labels having a care attribute, while positive contributions to the loss function for labels having a no-care attribute are permitted only if a confidence of the model prediction for the respective label is greater than a threshold.
    Type: Application
    Filed: May 31, 2022
    Publication date: December 1, 2022
    Inventors: Markus Schoeler, Jan Siegemund, Christian Nunn, Yu Su, Mirko Meuter, Adrian Becker, Peet Cremer
  • Publication number: 20220319182
    Abstract: Systems, methods, and apparatus for identifying and tracking UAVs including a plurality of sensors operatively connected over a network to a configuration of software and/or hardware. A computing device can tune the RF receiver to a particular frequency set. The computing device can receive RF signal data corresponding to a plurality of RF signals via the RF receiver. The computing device can detect a plurality of signal characteristics corresponding to the plurality of RF signals from the RF signal data. The computing device can identify a matching RF signal by comparing the RF signal data to a plurality of known RF signals. The computing device can apply a predetermined rule set to the matching RF signal to determine at least one action to take.
    Type: Application
    Filed: June 10, 2022
    Publication date: October 6, 2022
    Inventors: Rene Seeber, Ingo Seebach, Henning Meyer, Markus Schoeler, Kai Baumgart, Christian Scheibe, David Prantl
  • Publication number: 20220292806
    Abstract: A computer implemented method for object detection the following steps carried out by computer hardware components: determining an output of a first pooling layer based on input data; determining an output of a dilated convolution layer, provided directly after the first pooling layer, based on the output of the first pooling layer; determining an output of a second pooling layer, provided directly after the dilated convolution layer, based on the output of the dilated convolution layer; and carrying out the object detection based on at least the output of the dilated convolution layer or the output of the second pooling layer.
    Type: Application
    Filed: March 2, 2022
    Publication date: September 15, 2022
    Inventors: Yu Su, Markus Schoeler
  • Publication number: 20220221303
    Abstract: A computer implemented method for determining a location of an object comprises the following steps carried out by computer hardware components: determining a pre-stored map of a vicinity of the object; acquiring sensor data related to the vicinity of the object; determining an actual map based on the acquired sensor data; carrying out image registration based on the pre-stored map and the actual map; carrying out image registration based on the image retrieval; and determining a location of the object based on the image registration.
    Type: Application
    Filed: January 6, 2022
    Publication date: July 14, 2022
    Inventors: Mirko Meuter, Christian Nunn, Weimeng Zhu, Florian Kaestner, Adrian Becker, Markus Schoeler
  • Publication number: 20220026568
    Abstract: A computer implemented method for detection of objects in a vicinity of a vehicle comprises the following steps carried out by computer hardware components: acquiring radar data from a radar sensor; determining a plurality of features based on the radar data; providing the plurality of features to a single detection head; and determining a plurality of properties of an object based on an output of the single detection head.
    Type: Application
    Filed: July 23, 2021
    Publication date: January 27, 2022
    Inventors: Mirko Meuter, Jittu Kurian, Yu Su, Jan Siegemund, Zhiheng Niu, Stephanie Lessmann, Saeid Khalili Dehkordi, Florian Kästner, Igor Kossaczky, Sven Labusch, Arne Grumpe, Markus Schoeler, Moritz Luszek, Weimeng Zhu, Adrian Becker, Alessandro Cennamo, Kevin Kollek, Marco Braun, Dominic Spata, Simon Roesler
  • Publication number: 20210018593
    Abstract: A computer implemented method for processing radar reflections includes receiving radar reflections by at least one radar sensor; determining a target angle under which radar reflections related to a potential target are received by the at least one radar sensor; and determining an energy of radar reflections received by the at least one radar sensor under a pre-determined angular region around the target angle.
    Type: Application
    Filed: June 24, 2020
    Publication date: January 21, 2021
    Inventors: Florian KÄSTNER, Markus SCHOELER, Mirko MEUTER, Adrian BECKER
  • Publication number: 20200356783
    Abstract: Systems, methods, and apparatus for identifying and tracking UAVs including a plurality of sensors operatively connected over a network to a configuration of software and/or hardware. Generally, the plurality of sensors monitors a particular environment and transmits the sensor data to the configuration of software and/or hardware. The data from each individual sensor can be directed towards a process configured to best determine if a UAV is present or approaching the monitored environment. The system generally allows for a detected UAV to be tracked, which may allow for the system or a user of the system to predict how the UAV will continue to behave over time. The sensor information as well as the results generated from the systems and methods may be stored in one or more databases in order to improve the continued identifying and tracking of UAVs.
    Type: Application
    Filed: March 16, 2020
    Publication date: November 12, 2020
    Inventors: Rene SEEBER, Ingo Seebach, Henning Meyer, Markus Schoeler, Kai Baumgart, Christian Scheibe, David Prantl
  • Patent number: 10621443
    Abstract: Systems, methods, and apparatus for identifying and tracking UAVs including a plurality of sensors operatively connected over a network to a configuration of software and/or hardware. Generally, the plurality of sensors monitors a particular environment and transmits the sensor data to the configuration of software and/or hardware. The data from each individual sensor can be directed towards a process configured to best determine if a UAV is present or approaching the monitored environment. The system generally allows for a detected UAV to be tracked, which may allow for the system or a user of the system to predict how the UAV will continue to behave over time. The sensor information as well as the results generated from the systems and methods may be stored in one or more databases in order to improve the continued identifying and tracking of UAVs.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: April 14, 2020
    Assignee: Dedrone Holdings, Inc.
    Inventors: Rene Seeber, Ingo Seebach, Henning Meyer, Markus Schoeler, Kai Baumgart, Christian Scheibe, David Prantl
  • Publication number: 20190266410
    Abstract: Systems, methods, and apparatus for identifying and tracking UAVs including a plurality of sensors operatively connected over a network to a configuration of software and/or hardware. Generally, the plurality of sensors monitors a particular environment and transmits the sensor data to the configuration of software and/or hardware. The data from each individual sensor can be directed towards a process configured to best determine if a UAV is present or approaching the monitored environment. The system generally allows for a detected UAV to be tracked, which may allow for the system or a user of the system to predict how the UAV will continue to behave over time. The sensor information as well as the results generated from the systems and methods may be stored in one or more databases in order to improve the continued identifying and tracking of UAVs.
    Type: Application
    Filed: January 31, 2019
    Publication date: August 29, 2019
    Inventors: Rene Seeber, Ingo Seebach, Henning Meyer, Markus Schoeler, Kai Baumgart, Christian Scheibe, David Prantl
  • Patent number: 10317506
    Abstract: Systems, methods, and apparatus for identifying and tracking UAVs including a plurality of sensors operatively connected over a network to a configuration of software and/or hardware. Generally, the plurality of sensors monitors a particular environment and transmits the sensor data to the configuration of software and/or hardware. The data from each individual sensor can be directed towards a process configured to best determine if a UAV is present or approaching the monitored environment. The system generally allows for a detected UAV to be tracked, which may allow for the system or a user of the system to predict how the UAV will continue to behave over time. The sensor information as well as the results generated from the systems and methods may be stored in one or more databases in order to improve the continued identifying and tracking of UAVs.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: June 11, 2019
    Assignee: Dedrone Holdings, Inc.
    Inventors: Rene Seeber, Ingo Seebach, Henning Meyer, Markus Schoeler, Kai Baumgart, Christian Scheibe, David Prantl
  • Patent number: 10229329
    Abstract: Systems, methods, and apparatus for identifying and tracking UAVs including a plurality of sensors operatively connected over a network to a configuration of software and/or hardware. Generally, the plurality of sensors monitors a particular environment and transmits the sensor data to the configuration of software and/or hardware. The data from each individual sensor can be directed towards a process configured to best determine if a UAV is present or approaching the monitored environment. The system generally allows for a detected UAV to be tracked, which may allow for the system or a user of the system to predict how the UAV will continue to behave over time. The sensor information as well as the results generated from the systems and methods may be stored in one or more databases in order to improve the continued identifying and tracking of UAVs.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: March 12, 2019
    Assignee: DEDRONE HOLDINGS, INC.
    Inventors: Rene Seeber, Ingo Seebach, Henning Meyer, Markus Schoeler, Kai Baumgart, Christian Scheibe, David Prantl
  • Patent number: 10025993
    Abstract: Systems, methods, and apparatus for identifying and tracking UAVs including a plurality of sensors operatively connected over a network to a configuration of software and/or hardware. Generally, the plurality of sensors monitors a particular environment and transmits the sensor data to the configuration of software and/or hardware. The data from each individual sensor can be directed towards a process configured to best determine if a UAV is present or approaching the monitored environment. The system generally allows for a detected UAV to be tracked, which may allow for the system or a user of the system to predict how the UAV will continue to behave over time. The sensor information as well as the results generated from the systems and methods may be stored in one or more databases in order to improve the continued identifying and tracking of UAVs.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: July 17, 2018
    Assignee: Dedrone Holdings, Inc.
    Inventors: Rene Seeber, Ingo Seebach, Henning Meyer, Markus Schoeler, Kai Baumgart, Christian Scheibe, David Prantl
  • Patent number: 10025991
    Abstract: Systems, methods, and apparatus for identifying and tracking UAVs including a plurality of sensors operatively connected over a network to a configuration of software and/or hardware. Generally, the plurality of sensors monitors a particular environment and transmits the sensor data to the configuration of software and/or hardware. The data from each individual sensor can be directed towards a process configured to best determine if a UAV is present or approaching the monitored environment. The system generally allows for a detected UAV to be tracked, which may allow for the system or a user of the system to predict how the UAV will continue to behave over time. The sensor information as well as the results generated from the systems and methods may be stored in one or more databases in order to improve the continued identifying and tracking of UAVs.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: July 17, 2018
    Assignee: Dedrone Holdings, Inc.
    Inventors: Rene Seeber, Ingo Seebach, Henning Meyer, Markus Schoeler, Kai Baumgart, Christian Scheibe, David Prantl
  • Publication number: 20180128895
    Abstract: Systems, methods, and apparatus for identifying and tracking UAVs including a plurality of sensors operatively connected over a network to a configuration of software and/or hardware. Generally, the plurality of sensors monitors a particular environment and transmits the sensor data to the configuration of software and/or hardware. The data from each individual sensor can be directed towards a process configured to best determine if a UAV is present or approaching the monitored environment. The system generally allows for a detected UAV to be tracked, which may allow for the system or a user of the system to predict how the UAV will continue to behave over time. The sensor information as well as the results generated from the systems and methods may be stored in one or more databases in order to improve the continued identifying and tracking of UAVs.
    Type: Application
    Filed: November 8, 2016
    Publication date: May 10, 2018
    Inventors: Rene Seeber, Ingo Seebach, Henning Meyer, Markus Schoeler, Kai Baumgart, Christian Scheibe, David Prantl
  • Publication number: 20180129884
    Abstract: Systems, methods, and apparatus for identifying and tracking UAVs including a plurality of sensors operatively connected over a network to a configuration of software and/or hardware. Generally, the plurality of sensors monitors a particular environment and transmits the sensor data to the configuration of software and/or hardware. The data from each individual sensor can be directed towards a process configured to best determine if a UAV is present or approaching the monitored environment. The system generally allows for a detected UAV to be tracked, which may allow for the system or a user of the system to predict how the UAV will continue to behave over time. The sensor information as well as the results generated from the systems and methods may be stored in one or more databases in order to improve the continued identifying and tracking of UAVs.
    Type: Application
    Filed: October 9, 2017
    Publication date: May 10, 2018
    Inventors: Rene Seeber, Ingo Seebach, Henning Meyer, Markus Schoeler, Kai Baumgart, Christian Scheibe, David Prantl
  • Publication number: 20180129882
    Abstract: Systems, methods, and apparatus for identifying and tracking UAVs including a plurality of sensors operatively connected over a network to a configuration of software and/or hardware. Generally, the plurality of sensors monitors a particular environment and transmits the sensor data to the configuration of software and/or hardware. The data from each individual sensor can be directed towards a process configured to best determine if a UAV is present or approaching the monitored environment. The system generally allows for a detected UAV to be tracked, which may allow for the system or a user of the system to predict how the UAV will continue to behave over time. The sensor information as well as the results generated from the systems and methods may be stored in one or more databases in order to improve the continued identifying and tracking of UAVs.
    Type: Application
    Filed: November 8, 2016
    Publication date: May 10, 2018
    Inventors: Rene Seeber, Ingo Seebach, Henning Meyer, Markus Schoeler, Kai Baumgart, Christian Scheibe, David Prantl
  • Publication number: 20180129881
    Abstract: Systems, methods, and apparatus for identifying and tracking UAVs including a plurality of sensors operatively connected over a network to a configuration of software and/or hardware. Generally, the plurality of sensors monitors a particular environment and transmits the sensor data to the configuration of software and/or hardware. The data from each individual sensor can be directed towards a process configured to best determine if a UAV is present or approaching the monitored environment. The system generally allows for a detected UAV to be tracked, which may allow for the system or a user of the system to predict how the UAV will continue to behave over time. The sensor information as well as the results generated from the systems and methods may be stored in one or more databases in order to improve the continued identifying and tracking of UAVs.
    Type: Application
    Filed: November 8, 2016
    Publication date: May 10, 2018
    Inventors: Rene Seeber, Ingo Seebach, Henning Meyer, Markus Schoeler, Kai Baumgart, Christian Scheibe, David Prantl
  • Patent number: 9805273
    Abstract: Systems, methods, and apparatus for identifying and tracking UAVs including a plurality of sensors operatively connected over a network to a configuration of software and/or hardware. Generally, the plurality of sensors monitors a particular environment and transmits the sensor data to the configuration of software and/or hardware. The data from each individual sensor can be directed towards a process configured to best determine if a UAV is present or approaching the monitored environment. The system generally allows for a detected UAV to be tracked, which may allow for the system or a user of the system to predict how the UAV will continue to behave over time. The sensor information as well as the results generated from the systems and methods may be stored in one or more databases in order to improve the continued identifying and tracking of UAVs.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: October 31, 2017
    Assignee: Dedrone Holdings, Inc.
    Inventors: Rene Seeber, Ingo Seebach, Henning Meyer, Markus Schoeler, Kai Baumgart, Christian Scheibe, David Prantl