Patents by Inventor Marlon E. Menezes

Marlon E. Menezes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8338316
    Abstract: A plasma enhanced physical vapor deposition process deposits an amorphous carbon layer on an ion-implanted wafer for use in dynamic surface annealing of the wafer with an intense line beam of a laser wavelength. The deposition process is carried out at a wafer temperature below the dopant clustering threshold temperature, and includes introducing the wafer into a chamber having a carbon-containing target overlying the wafer, and furnishing a carrier gas into the chamber. The process further includes generating a wafer bias voltage and applying target source power to the carbon-containing target sufficient to produce ion bombardment of the carbon-containing target. The wafer bias voltage is set to a level at which the amorphous carbon layer that is deposited has a desired extinction coefficient at the laser wavelength.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: December 25, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Vijay Parihar, Christopher Dennis Bencher, Rajesh Kanuri, Marlon E. Menezes
  • Publication number: 20110223773
    Abstract: A plasma enhanced physical vapor deposition process deposits an amorphous carbon layer on an ion-implanted wafer for use in dynamic surface annealing of the wafer with an intense line beam of a laser wavelength. The deposition process is carried out at a wafer temperature below the dopant clustering threshold temperature, and includes introducing the wafer into a chamber having a carbon-containing target overlying the wafer, and furnishing a carrier gas into the chamber. The process further includes generating a wafer bias voltage and applying target source power to the carbon-containing target sufficient to produce ion bombardment of the carbon-containing target. The wafer bias voltage is set to a level at which the amorphous carbon layer that is deposited has a desired extinction coefficient at the laser wavelength.
    Type: Application
    Filed: May 19, 2011
    Publication date: September 15, 2011
    Inventors: Vijay Parihar, Christopher Dennis Bencher, Rajesh Kanuri, Marlon E. Menezes
  • Patent number: 7968473
    Abstract: A plasma enhanced physical vapor deposition process deposits an amorphous carbon layer on an ion-implanted wafer for use in dynamic surface annealing of the wafer with an intense line beam of a laser wavelength. The deposition process is carried out at a wafer temperature below the dopant clustering threshold temperature, and includes introducing the wafer into a chamber having a carbon-containing target overlying the wafer, and furnishing a carrier gas into the chamber. The process further includes generating a wafer bias voltage and applying target source power to the carbon-containing target sufficient to produce ion bombardment of the carbon-containing target. The wafer bias voltage is set to a level at which the amorphous carbon layer that is deposited has a desired extinction coefficient at the laser wavelength.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: June 28, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Vijay Parihar, Christopher Dennis Bencher, Rajesh Kanuri, Marlon E. Menezes
  • Patent number: 7745351
    Abstract: Methods of forming a dielectric layer where the tensile stress of the layer is increased by a plasma treatment at an elevated position are described. In one embodiment, oxide and nitride layers are deposited on a substrate and patterned to form an opening. A trench is etched into the substrate. The substrate is transferred into a chamber suitable for dielectric deposition. A dielectric layer is deposited over the substrate, filling the trench and covering mesa regions adjacent to the trench. The substrate is raised to an elevated position above the substrate support and exposed to a plasma which increases the tensile stress of the substrate. The substrate is removed from the dielectric deposition chamber, and portions of the dielectric layer are removed so that the dielectric layer is even with the topmost portion of the nitride layer. The nitride and pad oxide layers are removed to form the STI structure.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: June 29, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Xiaolin Chen, Srinivas D. Nemani, DongQing Li, Jeffrey C. Munro, Marlon E. Menezes
  • Patent number: 7588990
    Abstract: A plasma enhanced physical vapor deposition process deposits an amorphous carbon layer on an ion-implanted wafer for use in dynamic surface annealing of the wafer with an intense line beam of a laser wavelength. The deposition process is carried out at a wafer temperature below the dopant clustering threshold temperature, and includes introducing the wafer into a chamber and furnishing a hydrocarbon process gas into the chamber, preferably propylene (C3H6) or toluene (C7H8) or acetylene (C2H2) or a mixture of acetylene and methane (C2H4). The process further includes inductively coupling RF plasma source power into the chamber while and applying RF plasma bias power to the wafer. The wafer bias voltage is set to a level at which the amorphous carbon layer that is deposited has a desired stress (compressive or tensile). We have discovered that at a wafer temperature less than or equal to 475 degrees C.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: September 15, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Vijay Parihar, Christopher Dennis Bencher, Rajesh Kanuri, Marlon E. Menezes
  • Publication number: 20090035918
    Abstract: Methods of forming a dielectric layer where the tensile stress of the layer is increased by a plasma treatment at an elevated position are described. In one embodiment, oxide and nitride layers are deposited on a substrate and patterned to form an opening. A trench is etched into the substrate. The substrate is transferred into a chamber suitable for dielectric deposition. A dielectric layer is deposited over the substrate, filling the trench and covering mesa regions adjacent to the trench. The substrate is raised to an elevated position above the substrate support and exposed to a plasma which increases the tensile stress of the substrate. The substrate is removed from the dielectric deposition chamber, and portions of the dielectric layer are removed so that the dielectric layer is even with the topmost portion of the nitride layer. The nitride and pad oxide layers are removed to form the STI structure.
    Type: Application
    Filed: October 15, 2008
    Publication date: February 5, 2009
    Applicant: Applies Materials, Inc.
    Inventors: Xiaolin Chen, Srinivas D. Nemani, DongQing Li, Jeffrey C. Munro, Marlon E. Menezes
  • Patent number: 7465680
    Abstract: A plasma treatment process for increasing the tensile stress of a silicon wafer is described. Following deposition of a dielectric layer on a substrate, the substrate is lifted to an elevated position above the substrate receiving surface and exposed to a plasma treatment process which treats both the top and bottom surface of the wafer and increases the tensile stress of the deposited layer. Another embodiment of the invention involves biasing of the substrate prior to plasma treatment to bombard the wafer with plasma ions and raise the temperature of the substrate. In another embodiment of the invention, a two-step plasma treatment process can be used where the substrate is first exposed to a plasma at a processing position directly after deposition, and then raised to an elevated position where both the top and bottom of the wafer are exposed to the plasma.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: December 16, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Xiaolin Chen, Srinivas D. Nemani, DongQing Li, Jeffrey C. Munro, Marlon E. Menezes
  • Publication number: 20080108210
    Abstract: A plasma enhanced physical vapor deposition process deposits an amorphous carbon layer on an ion-implanted wafer for use in dynamic surface annealing of the wafer with an intense line beam of a laser wavelength. The deposition process is carried out at a wafer temperature below the dopant clustering threshold temperature, and includes introducing the wafer into a chamber having a carbon-containing target overlying the wafer, and furnishing a carrier gas into the chamber. The process further includes generating a wafer bias voltage and applying target source power to the carbon-containing target sufficient to produce ion bombardment of the carbon-containing target. The wafer bias voltage is set to a level at which the amorphous carbon layer that is deposited has a desired extinction coefficient at the laser wavelength.
    Type: Application
    Filed: April 5, 2007
    Publication date: May 8, 2008
    Inventors: Vijay Parihar, Christopher Dennis Bencher, Rajesh Kanuri, Marlon E. Menezes
  • Publication number: 20080057681
    Abstract: A plasma enhanced physical vapor deposition process deposits an amorphous carbon layer on an ion-implanted wafer for use in dynamic surface annealing of the wafer with an intense line beam of a laser wavelength. The deposition process is carried out at a wafer temperature below the dopant clustering threshold temperature, and includes introducing the wafer into a chamber and furnishing a hydrocarbon process gas into the chamber, preferably propylene (C3H6) or toluene (C7H8) or acetylene (C2H2) or a mixture of acetylene and methane (C2H4). The process further includes inductively coupling RF plasma source power into the chamber while and applying RF plasma bias power to the wafer. The wafer bias voltage is set to a level at which the amorphous carbon layer that is deposited has a desired stress (compressive or tensile). We have discovered that at a wafer temperature less than or equal to 475 degrees C.
    Type: Application
    Filed: March 28, 2007
    Publication date: March 6, 2008
    Inventors: Vijay Parihar, Christopher Dennis Bencher, Rajesh Kanuri, Marlon E. Menezes
  • Patent number: 6342307
    Abstract: A micro interface between a polymeric layer and a metal layer includes isolated clusters of metal partially embedded in the polymeric layer. The exposed portion of the clusters is smaller than embedded portions, so that a cross section, taken parallel to the interface, of an exposed portion of an individual cluster is smaller than a cross section, taken parallel to the interface, of an embedded portion of the individual cluster. At least half, but not all of the height of a preferred spherical cluster is embedded. The metal layer is completed by a continuous layer of metal bonded to the exposed portions of the discontinuous clusters. The micro interface is formed by heating a polymeric layer to a temperature, near its glass transition temperature, sufficient to allow penetration of the layer by metal clusters, after isolated clusters have been deposited on the layer at lower temperatures.
    Type: Grant
    Filed: November 24, 1997
    Date of Patent: January 29, 2002
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Marlon E. Menezes, Howard K. Birnbaum, Ian M. Robertson