Patents by Inventor Martin F. Ohmes

Martin F. Ohmes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9012853
    Abstract: A highly scalable platform for radiation measurement data collection with high precision time stamping and time measurements between the elements in the detection array uses IEEE 1588 with or without Synchronous Ethernet (timing over Ethernet) to synchronize the measurements. At a minimum, the system includes at least two radiation detector units, an IEEE 1588 and SyncE enabled Ethernet switch, and a computer for processing. The addition of timing over Ethernet and power over Ethernet (PoE) allows a radiation measurement system to operate with a single Ethernet cable, simplifying deployment of detectors using standardized technology with a multitude of configuration possibilities. This eliminates the need for an additional hardware for the timing measurements which simplifies the detection system, reduces the cost of the deployment, reduces the power consumption of the detection system and reduces the overall size of the system.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: April 21, 2015
    Assignee: FLIR Detection, Inc.
    Inventors: Andrey K. Gueorguiev, Martin F. Ohmes, Jeffrey R. Preston, Leslie D. Hoy, Hartmut Brands
  • Patent number: 8519350
    Abstract: Surfaces or surface portions incorporated into gas-filled neutron detectors are coated with and/or composed of at least partially, neutron reactive material. The surfaces may be flat or curved fins or plates, foils, porous or filamentary material, or semi-solid material or aerogel. The incorporation of the extended surfaces coated with or composed of neutron reactive material increases the neutron detection efficiency of the gas-filled detectors over conventional coated designs. These surfaces or surface portions increase the amount of neutron reactive material present in the detector over conventional coated designs and, as a result, increase the neutron detection efficiency. The surfaces can be made of conductive, semiconductive or insulative materials. The surfaces are arranged such that they do not detrimentally detract from the main function of a gas-filled detector with particular attention to gas-filled proportional detectors.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: August 27, 2013
    Inventors: Douglas S. McGregor, Steven L. Bellinger, Walter J. McNeil, Martin F. Ohmes, Kyle A. Nelson
  • Publication number: 20120217406
    Abstract: Surfaces or surface portions incorporated into gas-filled neutron detectors are coated with and/or composed of at least partially, neutron reactive material. The surfaces may be flat or curved fins or plates, foils, porous or filamentary material, or semi-solid material or aerogel. The incorporation of the extended surfaces coated with or composed of neutron reactive material increases the neutron detection efficiency of the gas-filled detectors over conventional coated designs. These surfaces or surface portions increase the amount of neutron reactive material present in the detector over conventional coated designs and, as a result, increase the neutron detection efficiency. The surfaces can be made of conductive, semiconductive or insulative materials. The surfaces are arranged such that they do not detrimentally detract from the main function of a gas-filled detector with particular attention to gas-filled proportional detectors.
    Type: Application
    Filed: February 24, 2012
    Publication date: August 30, 2012
    Inventors: Douglas S. McGregor, Steven L. Bellinger, Walter J. McNeil, Martin F. Ohmes, Kyle A. Nelson
  • Publication number: 20120153166
    Abstract: A highly scalable platform for radiation measurement data collection with high precision time stamping and time measurements between the elements in the detection array uses IEEE 1588 with or without Synchronous Ethernet (timing over Ethernet) to synchronize the measurements. At a minimum, the system includes at least two radiation detector units, an IEEE 1588 and SyncE enabled Ethernet switch, and a computer for processing. The addition of timing over Ethernet and power over Ethernet (PoE) allows a radiation measurement system to operate with a single Ethernet cable, simplifying deployment of detectors using standardized technology with a multitude of configuration possibilities. This eliminates the need for an additional hardware for the timing measurements which simplifies the detection system, reduces the cost of the deployment, reduces the power consumption of the detection system and reduces the overall size of the system.
    Type: Application
    Filed: May 5, 2011
    Publication date: June 21, 2012
    Inventors: Andrey K. Gueorguiev, Martin F. Ohmes, Jeffrey R. Preston, Leslie D. Hoy, Hartmut Brands