Patents by Inventor Martin M. Fejer

Martin M. Fejer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230367177
    Abstract: In some embodiments, a device for generating mid-infrared radiation is provided. The device may include a thin film quadratic nonlinear waveguide formed on a mid-infrared transparent cladding by a thin film material of a predetermined film thickness, the waveguide having a predetermined etch depth and a predetermined top width. At least one of the predetermined film thickness, the predetermined etch depth, and the predetermined top width may be tuned for the device to generate a coherent idler wave as a mid-infrared radiation from a fixed pump wave and a tunable signal wave.
    Type: Application
    Filed: May 12, 2023
    Publication date: November 16, 2023
    Applicants: NTT RESEARCH, INC., THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Jatadhari MISHRA, Marc JANKOWSKI, Alexander Y. HWANG, Hubert S. STOKOWSKI, Timothy P. McKENNA, Amir H. SAFAVI-NAEINI, Martin M. FEJER
  • Patent number: 11469567
    Abstract: Improved efficiency for nonlinear optical interactions is provided by using strongly confining waveguides for simultaneous imposition of dispersion design constraints at two or more dispersion orders. Quasi-phase-matching allows for phase-matching to be accomplished independently of the waveguide design, which helps provide sufficient design freedom for the dispersion design.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: October 11, 2022
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Martin M. Fejer, Carsten Langrock, Marc P. Jankowski
  • Publication number: 20220252958
    Abstract: Improved efficiency for nonlinear optical interactions is provided by using strongly confining waveguides for simultaneous imposition of dispersion design constraints at two or more dispersion orders. Quasi-phase-matching allows for phase-matching to be accomplished independently of the waveguide design, which helps provide sufficient design freedom for the dispersion design.
    Type: Application
    Filed: March 12, 2021
    Publication date: August 11, 2022
    Inventors: Martin M. Fejer, Carsten Langrock, Marc P. Jankowski
  • Publication number: 20120162748
    Abstract: Compact laser systems are disclosed which include ultrafast laser sources in combination with nonlinear crystals or waveguides. In some implementations fiber based mid-IR sources producing very short pulses and/or mid-IR sources based on a mode locked fiber lasers are utilized. Some embodiments may include an infrared source with an amplifier system comprising, in combination, a Tm fiber amplifier and an Er fiber amplifier. A difference frequency generator receives outputs from the Er and/or Tm amplifier system, and generates an output comprising a difference frequency. Exemplary applications of the compact, high brightness mid-IR light sources include medical applications, spectroscopy, ranging, sensing and metrology.
    Type: Application
    Filed: December 14, 2011
    Publication date: June 28, 2012
    Applicants: THE TRUSTEES OF LELAND STANFORD UNIVERSITY
    Inventors: Martin FERMANN, Jie JIANG, Christopher PHILLIPS, Martin M. FEJER
  • Patent number: 7349609
    Abstract: Terahertz radiation generation systems and methods are implemented using a variety of methods and devices. According to an example embodiment of the present invention, method for generating terahertz radiation is implemented where the wavelength of an optical pulse is controlled, and where the wavelength is controlled as a function of the group velocity dispersion in a nonlinear crystal. The optical pulse is then directed through consecutively-inverted parallel domains in the nonlinear crystal.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: March 25, 2008
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Konstantin L. Vodopyanov, Martin M. Fejer
  • Patent number: 7339718
    Abstract: A method for generating THz radiation comprises illuminating a semiconductor crystal with an optical pulse train. The semiconductor crystal comprises alternating parallel crystal domains, with each domain having a crystal orientation inverted with respect to adjacent domains. The optical pulse train propagates substantially perpendicularly relative to domain boundaries in the semiconductor crystal. The THz radiation is generated from the optical pulse train by optical down-conversion mediated by the semiconductor crystal. Optical path lengths through the crystal domains at least in part determine a frequency of the generated THz radiation. THz generation efficiency may be enhanced by placing the semiconductor crystal within an external resonant cavity, by placing the semiconductor crystal within a laser cavity, or by placing the semiconductor crystal within an OPO cavity. The semiconductor crystal may comprise zinc-blende, III-V, or II-VI semiconductor.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: March 4, 2008
    Assignees: Microtech Instruments Inc, State of Oregon acting by and though Oregon State Board of Higher Education on behalf of Oregon State University, The Board of Trustees of the Leland Stanford Junior University
    Inventors: Konstantin L. Vodopyanov, Yun-Shik Lee, Vladimir G. Kozlov, Martin M. Fejer
  • Patent number: 7009759
    Abstract: A multi-channel optical frequency mixer for all-optical signal processing and a method for engineering the same. The multi-channel mixer uses a nonlinear optical material exhibiting an effective nonlinearity deff whose spatial distribution is defined by a quasi-phase-matching grating, e.g., a QPM grating. The spatial distribution is defined such that its Fourier transform to the spatial frequency domain defines at least two wavelength channels which are quasi-phase-matched for performing optical frequency mixing. The wavelength channels correspond to dominant Fourier components and the Fourier transform is appropriately adjusted using grating parameters such as grating periods, phase reversal sequences and duty cycles to include an odd or even number of dominant Fourier components. The multi-channel mixer can perform frequency mixing operations such as second harmonic generation (SHG), difference frequency generation (DFG), sum frequency generation (SFG), and parametric amplification.
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: March 7, 2006
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ming-Hsien Chou, Krishnan Parameswaran, Martin M. Fejer
  • Patent number: 6972896
    Abstract: In a method of amplifying optical input signals over a wide bandwidth, the optical input signals are applied to an optical waveguide made from a rare-earth-doped amorphous material (e.g., erbium-doped Bi4Ge3O12 material). The optical input signals include optical signals having wavelengths over a range of approximately 125. Pump light is applied to the optical waveguide to cause the waveguide to provide optical gain to the optical input signals. The optical gain causes the optical signals to be amplified within the waveguide to provide amplified optical signals over the approximately 125-nanometer range, including, in particular, optical signals having wavelengths at one end of the range and optical signals having wavelengths at a second end or the range.
    Type: Grant
    Filed: July 6, 2004
    Date of Patent: December 6, 2005
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Yannick G. Feillens, Michel J. F. Digonnet, Martin M. Fejer
  • Patent number: 6970276
    Abstract: An apparatus and method for nonlinear frequency mixing of light waves relying on a nonlinear material having a nonlinear coefficient d and a waveguide fabricated in the nonlinear material. The waveguide is equipped with a quasi-phase-matching (QPM) grating extending along the length of the waveguide and endowed with an asymmetry of the nonlinear coefficient d along the width of the waveguide. The transverse asymmetry is chosen to establish a mode overlap for nonlinear frequency mixing between different transverse width modes of light. The transverse asymmetry can be odd or else neither odd nor even so as to establish mode overlap for frequency mixing between even transverse width modes and odd transverse width modes. The QPM grating can have single or multiple grating stripes that can be staggered, interleaved, angled and otherwise altered to achieve the transverse asymmetry establishing a mode overlap for frequency mixing between even transverse width modes and odd transverse width modes.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: November 29, 2005
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jonathan R. Kurz, Martin M. Fejer
  • Patent number: 6930821
    Abstract: A method and a nonlinear frequency mixer employing the method to generate at least one output light from at least one input light with the aid of a quasi-phase-matching (QPM) grating for quasi-phase-matching the input and output light involved in a nonlinear frequency mixing operation such as three-wave mixing, four-wave mixing or other nonlinear operation mediated by a susceptibility of the nonlinear optical material. The QPM grating has a beam-modifying pattern with features for wave front shaping. More specifically, the features shape the wave fronts of the output light by diffraction or phase front shaping to thereby modify its propagation. This modification of propagation can be used to steer, focus, defocusing, split and/or collimate the output light.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: August 16, 2005
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jonathan R. Kurz, Martin M. Fejer
  • Patent number: 6906855
    Abstract: In a method of amplifying optical input signals over a wide bandwidth, the optical input signals are applied to an optical waveguide made from a rare-earth-doped amorphous material (e.g., erbium-doped SrY4(SiO4)3O material). The optical input signals include optical signals having wavelengths over a range of approximately 125 nanometers. Pump light is applied to the optical waveguide to cause the waveguide to provide optical gain to the optical input signals. The optical gain causes the optical signals to be amplified within the waveguide to provide amplified optical signals over approximately a 125-nanometer range, including, in particular, optical signals having wavelengths at one end of the range and optical signals having wavelengths at a second end of the range.
    Type: Grant
    Filed: July 6, 2004
    Date of Patent: June 14, 2005
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Yannick G. Feillens, Michel J. F. Digonnet, Martin M. Fejer
  • Publication number: 20040246569
    Abstract: In a method of amplifying optical input signals over a wide bandwidth, the optical input signals are applied to an optical waveguide made from a rare-earth-doped amorphous material (e.g., erbium-doped yttrium aluminum oxide material). The optical input signals include optical signals having wavelengths over a range of at least 80 nanometers, and, preferably, over a range of at least 160 nanometers. Pump light is applied to the optical waveguide to cause the waveguide to provide optical gain to the optical input signals. The optical gain causes the optical signals to be amplified within the waveguide to provide amplified optical signals over the extended 80-160-nanometer range, including, in particular, optical signals having wavelengths at one end of the range and optical signals having wavelengths at a second end or the range.
    Type: Application
    Filed: July 6, 2004
    Publication date: December 9, 2004
    Inventors: Yannick G. Feillens, Michel J.F. Digonnet, Martin M. Fejer
  • Publication number: 20040246570
    Abstract: In a method of amplifying optical input signals over a wide bandwidth, the optical input signals are applied to an optical waveguide made from a rare-earth-doped amorphous material (e.g., erbium-doped yttrium aluminum oxide material). The optical input signals include optical signals having wavelengths over a range of at least 80 nanometers, and, preferably, over a range of at least 160 nanometers. Pump light is applied to the optical waveguide to cause the waveguide to provide optical gain to the optical input signals. The optical gain causes the optical signals to be amplified within the waveguide to provide amplified optical signals over the extended 80-160-nanometer range, including, in particular, optical signals having wavelengths at one end of the range and optical signals having wavelengths at a second end or the range.
    Type: Application
    Filed: July 6, 2004
    Publication date: December 9, 2004
    Inventors: Yannick G. Feillens, Michel J.F. Digonnet, Martin M. Fejer
  • Publication number: 20040233511
    Abstract: An apparatus and method for nonlinear frequency mixing of light waves relying on a nonlinear material having a nonlinear coefficient d and a waveguide fabricated in the nonlinear material. The waveguide is equipped with a quasi-phase-matching (QPM) grating extending along the length of the waveguide and endowed with an asymmetry of the nonlinear coefficient d along the width of the waveguide. The transverse asymmetry is chosen to establish a mode overlap for nonlinear frequency mixing between different transverse width modes of light. The transverse asymmetry can be odd or else neither odd nor even so as to establish mode overlap for frequency mixing between even transverse width modes and odd transverse width modes. The QPM grating can have single or multiple grating stripes that can be staggered, interleaved, angled and otherwise altered to achieve the transverse asymmetry establishing a mode overlap for frequency mixing between even transverse width modes and odd transverse width modes.
    Type: Application
    Filed: May 22, 2003
    Publication date: November 25, 2004
    Inventors: Jonathan R. Kurz, Martin M. Fejer
  • Publication number: 20040227986
    Abstract: A method and a nonlinear frequency mixer employing the method to generate at least one output light from at least one input light with the aid of a quasi-phase-matching (QPM) grating for quasi-phase-matching the input and output light involved in a nonlinear frequency mixing operation such as three-wave mixing, four-wave mixing or other nonlinear operation mediated by a susceptibility of the nonlinear optical material. The QPM has a beam-modifying pattern with features for wave front shaping. More specifically, the features shape the wave fronts of the output light by diffraction or phase front shaping to thereby modify its propagation. This modification of propagation can be used to steer, focus, defocusing, split and/or collimate the output light.
    Type: Application
    Filed: May 16, 2003
    Publication date: November 18, 2004
    Inventors: Jonathan R. Kurz, Martin M. Fejer
  • Patent number: 6781750
    Abstract: In a method of amplifying optical input signals over a wide bandwidth, the optical input signals are applied to an optical waveguide made from a rare-earth-doped amorphous material (e.g., erbium-doped yttrium aluminum oxide material). The optical input signals include optical signals having wavelengths over a range of at least 80 nanometers, and, preferably, over a range of at least 160 nanometers. Pump light is applied to the optical waveguide to cause the waveguide to provide optical gain to the optical input signals. The optical gain causes the optical signals to be amplified within the waveguide to provide amplified optical signals over the extended 80-160-nanometer range, including, in particular, optical signals having wavelengths at one end of the range and optical signals having wavelengths at a second end or the range.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: August 24, 2004
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Yannick G. Feillens, Michel J. F. Digonnet, Martin M. Fejer
  • Patent number: 6744555
    Abstract: A multiple-wavelength ultrashort-pulse laser system includes a laser generator producing ultrashort pulses at a fixed wavelength, and at least one and preferably a plurality of wavelength-conversion channels. Preferably, a fiber laser system is used for generating single-wavelength, ultrashort pulses. An optical split switch matrix directs the pulses from the laser generator into at least one of the wavelength conversion channels. An optical combining switch matrix is disposed downstream of the wavelength-conversion channels and combines outputs from separate wavelength-conversion channels into a single output channel. Preferably, waveguides formed in a ferroelectric substrate by titanium indiffusion (TI) and/or proton exchange (PE) form the wavelength-conversion channels and the splitting and combining matrices. Use of the waveguide allows efficient optical parametric generation to occur in the wavelength-conversion channels at pulse energies achievable with a mode-locked laser source.
    Type: Grant
    Filed: March 17, 1998
    Date of Patent: June 1, 2004
    Assignees: IMRA America, Inc., Leland Stanford Junior University
    Inventors: Almantas Galvanauskas, Mark A. Arbore, Martin M. Fejer, Donald J. Harter
  • Publication number: 20040075883
    Abstract: A multiple-wavelength ultrashort-pulse laser system includes a laser generator producing ultrashort pulses at a fixed wavelength, and at least one and preferably a plurality of wavelength-conversion channels. Preferably, a fiber laser system is used for generating single-wavelength, ultrashort pulses. An optical split switch matrix directs the pulses from the laser generator into at least one of the wavelength conversion channels. An optical combining switch matrix is disposed downstream of the wavelength-conversion channels and combines outputs from separate wavelength-conversion channels into a single output channel. Preferably, waveguides formed in a ferroelectric substrate by titanium indiffusion (TI) and/or proton exchange (PE) form the wavelength-conversion channels and the splitting and combining matrices. Use of the waveguide allows efficient optical parametric generation to occur in the wavelength-conversion channels at pulse energies achievable with a mode-locked laser source.
    Type: Application
    Filed: March 17, 1998
    Publication date: April 22, 2004
    Inventors: ALMANTAS GALVANAUSKAS, MARK A. ARBORE, MARTIN M. FEJER, DONALD J. HARTER
  • Patent number: 6721093
    Abstract: In a method of amplifying optical input signals over a wide bandwidth, the optical input signals are applied to an optical waveguide made from a rare-earth-doped amorphous material (e.g., erbium-doped yttrium aluminum oxide material). The optical input signals include optical signals having wavelengths over a range of at least 80 nanometers, and, preferably, over a range of at least 160 nanometers. Pump light is applied to the optical waveguide to cause the waveguide to provide optical gain to the optical input signals. The optical gain causes the optical signals to be amplified within the waveguide to provide amplified optical signals over the extended 80-160-nanometer range, including, in particular, optical signals having wavelengths at one end of the range and optical signals having wavelengths at a second end or the range.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: April 13, 2004
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Yannick G. Feillens, Michel J. F. Digonnet, Martin M. Fejer
  • Patent number: 6687042
    Abstract: A compensated nonlinear optical frequency mixer for compensating the walk-off produced by group velocity mismatch (GVM) between interaction waves. The compensated mixer has a first mixing region in which the interaction waves participate in a non-linear optical mixing process and where walk-off occurs between the interaction waves due to GVM. The compensated mixer is equipped with a frequency selective coupling and time delay structure located after the first mixing region for eliminating the walk-off produced between the interaction waves in the first mixing region by guiding the waves in arms whose lengths differ by a re-synchronization length. A second mixing region is located after the frequency-selective coupling and time delay structure, such that when the waves emerge in phase from the frequency selective coupling and time delay structure they continue to interact efficiently in the second mixing region.
    Type: Grant
    Filed: August 27, 2001
    Date of Patent: February 3, 2004
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ming-Hsien Chou, Martin M. Fejer, Jonathan Kurz