Patents by Inventor Martin Rütering

Martin Rütering has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11383205
    Abstract: Fluid treatment system comprising a row of vertically arranged cylindrical filtration modules having a cylindrical shell, an upper end, a lower end and a shell interior and an upper and a lower header coupled to upper and lower end of the shell. In the shell interior, hollow fiber membranes are embedded with their ends in an upper and a lower tube sheet and are open at the ends. An exterior filtrate space is formed around the membranes extending between upper and lower tube sheets and an inner surface of the shell. Upper and lower head spaces are formed between upper and lower tube sheets and the respective headers. The lumina of the hollow fiber membranes are in fluid communication with the head spaces. The cylindrical shells comprise outlet ports being in fluid communication with the exterior filtrate spaces and being connected to a filtrate branch pipe.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: July 12, 2022
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Norbert Selzer, Stefan Richterich, Martin Ruetering
  • Publication number: 20200238216
    Abstract: Fluid treatment system comprising a row of vertically arranged cylindrical filtration modules having a cylindrical shell, an upper end, a lower end and a shell interior and an upper and a lower header coupled to upper and lower end of the shell. In the shell interior, hollow fiber membranes are embedded with their ends in an upper and a lower tube sheet and are open at the ends. An exterior filtrate space is formed around the membranes extending between upper and lower tube sheets and an inner surface of the shell. Upper and lower head spaces are formed between upper and lower tube sheets and the respective headers. The lumina of the hollow fiber membranes are in fluid communication with the head spaces. The cylindrical shells comprise outlet ports being in fluid communication with the exterior filtrate spaces and being connected to a filtrate branch pipe.
    Type: Application
    Filed: October 18, 2018
    Publication date: July 30, 2020
    Inventors: Norbert Selzer, Stefan Richterich, Martin Ruetering
  • Patent number: 8827086
    Abstract: The invention relates to a hollow-fiber membrane for ultrafiltration made from a hydrophobic aromatic sulfone polymer and at least one hydrophilic polymer, the membrane having an open-pore separating layer on the lumen side, an adjoining supporting layer with asymmetric, sponge-like pore structure without finger pores and an outer layer adjoining the supporting layer towards the outer surface. The separating layer has a cutoff between 20 000 and 200 000 daltons, a thickness of max. 10% of the membrane thickness and an essentially isotropic pore structure. The size of the pores in the supporting layer initially increases up to a zone with maximum pore size, and then decreases towards the outer layer, and the outer layer exhibits a thickness of 10 to 30% of the wall thickness and an essentially isotropic pore structure. The mean size of the pores in the outer layer is larger than in the separating layer, but smaller than in the supporting layer.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: September 9, 2014
    Assignee: Membrana GmbH
    Inventors: Wolfgang Ansorge, Ernst Spindler, Richard Krüger, Martin Rütering, Oliver Schuster
  • Publication number: 20100224553
    Abstract: The invention relates to a hollow-fibre membrane for ultrafiltration made from a hydrophobic aromatic sulfone polymer and at least one hydrophilic polymer, the membrane having an open-pore separating layer on the lumen side, an adjoining supporting layer with asymmetric, sponge-like pore structure without finger pores and an outer layer adjoining the supporting layer towards the outer surface. The separating layer has a cutoff between 20 000 and 200 000 daltons, a thickness of max. 10% of the membrane thickness and an essentially isotropic pore structure. The size of the pores in the supporting layer initially increases up to a zone with maximum pore size, and then decreases towards the outer layer, and the outer layer exhibits a thickness of 10 to 30% of the wall thickness and an essentially isotropic pore structure. The mean size of the pores in the outer layer is larger than in the separating layer, but smaller than in the supporting layer.
    Type: Application
    Filed: May 3, 2007
    Publication date: September 9, 2010
    Inventors: Wolfgang Ansorge, Ernst Spindler, Richard Krüger, Martin Rütering, Oliver Schuster