Patents by Inventor Martin T. Rowland

Martin T. Rowland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140195828
    Abstract: In one embodiment, the present invention includes a processor having multiple cores to independently execute instructions, a first sensor to measure a first power consumption level of the processor based at least in part on events occurring on the cores, and a hybrid logic to combine the first power consumption level and a second power consumption level. Other embodiments are described and claimed.
    Type: Application
    Filed: March 30, 2012
    Publication date: July 10, 2014
    Inventors: Ankush Varma, Krishnakanth V. Sistla, Martin T. Rowland, Vivek Garg, James S. Burns
  • Publication number: 20140173297
    Abstract: In an embodiment, a processor includes a core to execute instructions, uncore logic coupled to the core, and a power controller to control a power consumption level. The power controller is configured to determine an activity level of the processor and responsive to this level, to generate a request for communication to a second processor coupled to the processor to request frequency coordination between the processors. Other embodiments are described and claimed.
    Type: Application
    Filed: December 17, 2012
    Publication date: June 19, 2014
    Inventors: Ankush Varma, Krishnakanth V. Sistla, Ian M. Steiner, Vivek Garg, Chris Poirier, Martin T. Rowland
  • Publication number: 20140157021
    Abstract: In an embodiment, a processor includes a plurality of cores each to independently execute instructions, a plurality of graphics engines each to independently perform graphics operations; and, a power control unit coupled to the plurality of cores to control power consumption of the processor, where the power control unit includes a power excursion control logic to limit a power consumption level of the processor from being above a defined power limit for more than a duty cycle portion of an operating period. Other embodiments are described and claimed.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Inventors: Ankush Varma, Krishnakanth Sistla, Martin T. Rowland, Brian J. Griffith, Viktor D. Vogman, Joseph R. Doucette, Eric J. Dehaemer, Vivek Garg, Chris Poirier, Jeremy J. Shrall, Avinash N. Ananthakrishnan, Stephen H. Gunther
  • Publication number: 20140129858
    Abstract: An apparatus and method for managing a frequency of a computer processor. The apparatus includes a power control unit (PCU) to manage power in a computer processor. The PCU includes a data collection module to obtain transaction rate data from a plurality of communication ports in the computer processor and a frequency control logic module coupled to the data collection module, the frequency control logic to calculate a minimum processor interconnect frequency for the plurality of communication ports to handle traffic without significant added latency and to override the processor interconnect frequency to meet the calculated minimum processor interconnect frequency.
    Type: Application
    Filed: December 21, 2011
    Publication date: May 8, 2014
    Inventors: Ankush Varma, Ian M. Steiner, Krishnakanth V. Sistla, Matthew M. Bace, Vivek Garg, Martin T. Rowland, Jeffrey S. Wilder
  • Publication number: 20140006761
    Abstract: An apparatus that includes a semiconductor chip having a processor and an on-die non-volatile storage resource is described. The on-die non volatile storage is to store different, appropriate performance related information for different configurations and/or usage cases of the processor for a same performance state of the processor.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Inventors: Ankush Varma, Krishnakanth V. Sistla, Martin T. Rowland, Chris Poirier, Eric J. Dehaemer, Avinash N. Ananthakrishnan, Jeremy J. Shrall, Xiuting C. Man, Stephen H. Gunther, Krishna K. Rangan, Devadatta V. Bodas, Don Soltis, Hang T. Nguyen, Cyprian W. Woo, Thi Dang
  • Publication number: 20130339777
    Abstract: Dynamic runtime calibration of a processor with respect to a specific voltage regulator that powers the processor or a memory subsystem coupled to the processor can reduce or eliminate the need for guardbands in power management computations. The processor receives a current measurement from the voltage regulator and computes a calibration factor based on the measured value and a stored expected value. The calibration factor can be used in making power management decisions instead of adding the guardband to power readings. A manufacturer or distributor of the processor can compute the stored values with a controlled voltage supply that has a higher precision than typical commercial power supplies used in computing systems. The computed, stored values indicate the expected value, which can be used to determine a calibration factor relative to a voltage regulator of an active system.
    Type: Application
    Filed: December 30, 2011
    Publication date: December 19, 2013
    Inventors: Ankush Varma, Jeremy J. Shrall, Krishnakanth Venkata Sistla, Avinash N. Ananthakrishnan, Vivek Garg, Christopher A. Poirier, Martin T. Rowland, Edward R. Stanford
  • Publication number: 20130332753
    Abstract: A method and apparatus for dynamic power limit sharing among the modules in the platform. In one embodiment of the invention, the platform comprises a processor and memory modules. By expanding the power domain to include the processor and the memory modules, dynamic sharing of the power budget of the platform between the processor and the memory modules is enabled. For low-bandwidth workloads, the dynamic sharing of the power budget offers significant opportunity for the processor to increase its frequency by using the headroom in the memory power and vice versa. This enables higher peak performance for the same total platform power budget in one embodiment of the invention.
    Type: Application
    Filed: March 29, 2012
    Publication date: December 12, 2013
    Inventors: Ankush Varma, Krishnakanth V. Sistla, Cesar A. Quiroz, Vivek Garg, Martin T. Rowland, Inder M. Sodhi, James S. Burns
  • Publication number: 20130179706
    Abstract: In one embodiment, the present invention includes a processor having a core and a power controller to control power management features of the processor. The power controller can receive an energy performance bias (EPB) value from the core and access a power-performance tuning table based on the value. Using information from the table, at least one setting of a power management feature can be updated. Other embodiments are described and claimed.
    Type: Application
    Filed: March 1, 2013
    Publication date: July 11, 2013
    Inventors: Krishnakanth V. Sistla, Jeremy Shrall, Stephen H. Gunther, Efraim Rotem, Alon Naveh, Eliezer Weissmann, Anil Aggarwal, Martin T. Rowland, Ankush Varma, Ian M. Steiner, Matthew Bace, Avinash N. Ananthakrishnan, Jason Brandt
  • Publication number: 20120204042
    Abstract: In one embodiment, the present invention includes a processor having a core and a power controller to control power management features of the processor. The power controller can receive an energy performance bias (EPB) value from the core and access a power-performance tuning table based on the value. Using information from the table, at least one setting of a power management feature can be updated. Other embodiments are described and claimed.
    Type: Application
    Filed: December 15, 2011
    Publication date: August 9, 2012
    Inventors: Krishnakanth V. Sistla, Jeremy Shrall, Stephen H. Gunther, Efraim Rotem, Alon Naveh, Eliezer Weissmann, Anil Aggarwal, Martin T. Rowland, Ankush Varma, Ian M. Steiner, Matthew Bace, Avinash N. Ananthakrishnan, Jason Brandt
  • Publication number: 20120185706
    Abstract: An apparatus, method and system is described herein for dynamic power control of a power domain. A power limit over a time window is provided. And over a control loop period a power interface determines energy consumption of the power domain, intelligently budgets power among devices within the power domain based on the energy consumption, converts those budgets to performance maximums for the power domain, and limits performance of devices in the power domain to the performance maximums utilizing a running average power limit.
    Type: Application
    Filed: December 13, 2011
    Publication date: July 19, 2012
    Inventors: Krishnakanth V. Sistla, Martin T. Rowland, Cesar A. Quiroz, Joseph R. Doucette, Gopikrishna Jandhyala, Kai Cheng, Celeste M. Brown, Avinash N. Ananthakrishnan