Patents by Inventor Martin Vossiek

Martin Vossiek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210405183
    Abstract: The invention relates to a radar system for capturing surroundings of a moving object, in particular a vehicle and/or a transportation apparatus, such as a crane, in particular, wherein the system is mounted or mountable on the moving object, wherein the radar system comprises at least two non-coherent radar modules (RM 1, RM 2, . . . RM N) having at least one transmitter antenna and at least one receiver antenna, wherein the radar modules (RM 1, RM 2, . . . RM N) are arranged or arrangeable in distributed fashion on the moving object, wherein provision is made of at least one evaluation device which is configured to process transmitted and received signals of the radar modules to form modified measurement signals in such a way that the modified measurement signals are coherent in relation to one another.
    Type: Application
    Filed: February 28, 2018
    Publication date: December 30, 2021
    Inventors: Martin VOSSIEK, Michael GOTTINGER, Peter GULDEN, Mark CHRISTMANN, Christoph MAMMITZSCH
  • Publication number: 20210389411
    Abstract: The invention relates to a locating method for localizing at least one object using wave-based signals, wherein a wave field emanates from the object to be localized and the wave field emanating from the object is received by a number N of receivers, at least one measurement signal is formed in every receiver, said measurement signal being dependent on the spatial and temporal distribution of the wave field and the phase progression of said measurement signal being characteristically influenced by the signal propagation time from the object to the receiver, wherein, for position locating, phase values for each of the at least two measurement signals are taken as measured phase values, and wherein the current position (P(k)) of the object to be located at the time k is determined by a comparison of at least one linear combination of the measured phase values with at least one linear combination of the associated hypothetical phase values, which result from the transmitter-receiver distance(s), and using a recu
    Type: Application
    Filed: April 23, 2019
    Publication date: December 16, 2021
    Inventors: Melanie Lipka, Erik Sippel, Martin Vossiek
  • Patent number: 11112487
    Abstract: A method serves for imaging polarimetry. A chipless, passive transponder which has a plurality of surface regions with different polarimetric properties is illuminated fully polarimetrically by radar radiation. At least one polarization-encoded image of the transponder is generated using the radar radiation reflected thereby, and the different surface regions of the transponder in the polarization-encoded image can be recognized by their at least one polarimetric property. The passive, chipless transponder has at least two surface regions with different polarimetric structures.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: September 7, 2021
    Assignee: Symeo GmbH
    Inventors: Martin Vossiek, Julian Adametz, Maximilian Poepperl
  • Patent number: 11057536
    Abstract: The invention refers to a system for analyzing a document. Each of two measurement arrangements includes two components being a radiation source and a radiation detector, respectively. The two measurement arrangements provide measurement data and differ from each other with regard to a measurement principle, a kind of radiation source, a kind of radiation detector, a kind of relative movement between the document and a component, a kind of relative arrangement of the two components to each other, a kind of emitted radiation, a kind of received radiation or a kind of processing information about radiation emitted by the respective radiation source and/or about radiation received by the respective radiation detector. An evaluator provides data based on the measurement data. The invention also refers to a corresponding method.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: July 6, 2021
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Tobias Schoen, Wolfgang Holub, Daniel Stromer, Andreas Maier, Gisela Anton, Michel Thilo, Martin Vossiek, Jan Schuer
  • Patent number: 11016169
    Abstract: A method is described in particular for reducing interference due to phase noise in a radar system, in which in a first noncoherent transceiver unit (NKSE1) a first signal (sigTX1) is generated and transmitted, in particular emitted, via a path (SP), in a further, in particular second noncoherent transceiver unit (NKSE2), a first signal (sigTX2) is generated and transmitted, in particular emitted, via the path (SP), the signals (sigTX1 and sigTX2) are received directly or indirectly in the respective other transceiver unit and are processed further therein as received signals sigRX12 and sigRX21, in the first transceiver unit (NKSE1), a comparison signal (sigC12) is formed from its first signal (sigTX1) and from such a first signal (sigRTX2) received from the further transceiver unit (NKSE2) via the path (SP), and in the further transceiver unit (NKSE2), a further comparison signal (sigC21) is formed from its first signal (sigTX2) and from such a first signal (sigTX1) received from the first transceiver unit
    Type: Grant
    Filed: January 3, 2017
    Date of Patent: May 25, 2021
    Assignee: Symeo GmbH
    Inventors: Martin Vossiek, Michael Gottinger, Fabian Kirsch, Peter Gulden
  • Patent number: 11009598
    Abstract: The invention relates to a radar method for determining the angular position, the location, and/or the velocity, in particular the vectorial velocity, of a target, wherein a first transceiver unit and at least one second transceiver unit, which is spatially separated in particular from the first transceiver unit, are not synchronized, but a measurement beginning of the first transceiver unit and the second transceiver unit is triggered in a wireless or wired manner with a chronological deviation ?tn, wherein measurements of the transceiver units are coherently processed.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: May 18, 2021
    Assignee: Symeo GmbH
    Inventors: Yassen Dobrev, Peter Gulden, Mark Christmann, Martin Vossiek, Michael Gottinger
  • Patent number: 11002818
    Abstract: A wave-based method has at least two reference stations (1, 2) transmit signals (s1, s2; s3, s4). The signals are transmitted almost at the same time (S1, S2), are transmitted in the same frequency range, and are separable using a multiplexing method. At least one of the sending reference stations (1, 2), besides transmitting its own signal (s1, s2), also receives at least one signal (s2, s1) sent by another reference station (2, 1) at the same time and determines a time stagger (?1) and/or a phase angle between its own transmission and the reception with high precision. At least one receiving station (7) which at least receives the signals (s1, s2) receives the signals (s3, s4) from at least two of the reference stations (1, 2). A system and stations perform the wave-based method.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: May 11, 2021
    Assignee: SYMEO GmbH
    Inventors: Martin Vossiek, Peter Gulden, Fabian Kirsch
  • Patent number: 10962634
    Abstract: The invention relates to a method in a radar system, wherein: in a first non-coherent transmitting-receiving unit (NKSE1), a first signal (sigTX1) is generated and is transmitted, in particular emitted, via a path (SP); in a further, in particular second non-coherent transmitting-receiving unit (NKSE2), a first signal (sigTX2) is generated and is sent, in particular emitted, via the path (SP); in the first transmitting-receiving unit (NKSE1), a comparison signal (sigC12) is formed from the first signal (sigTX1) of the first transmitting-receiving unit and from such a first signal (sigTX2) received from the further transmitting-receiving unit (NKSE2) via the path (SP); and in the further transmitting-receiving unit (NKSE2), a further comparison signal (sigC21) is formed from the first signal (sigTX2) of the further transmitting-receiving unit and from such a first signal (sigTX1) received from the first transmitting-receiving unit (NKSE1) via the path (SP), wherein the further comparison signal (sigC21) is tra
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: March 30, 2021
    Assignee: SYMEO GMBH
    Inventors: Peter Gulden, Martin Vossiek
  • Publication number: 20210080540
    Abstract: The invention relates to a method for compensating for noise, in particular phase noise, in a radio location system, comprising a first and a second non-coherent transceiving unit, wherein a first measurement signal (sm1(t)) and at least one second measurement signal (sm2(t)) are generated on the basis of signals transmitted by the first transceiving unit and received by the first transceiving unit, wherein a first frequency shift in the first measurement signal (sm1(t)) which is caused by noise, in particular phase noise, is opposite, in particular exactly opposite, a second frequency shift in the second measurement signal (sm2(t)) which is caused by the noise, in particular phase noise.
    Type: Application
    Filed: April 25, 2018
    Publication date: March 18, 2021
    Inventors: Martin Vossiek, Peter Gulden, Michael Gottinger
  • Publication number: 20210080541
    Abstract: Method for compensating for noise, in particular phase noise, in a primary radar system, wherein a first transmission signal with a first interfering component caused by the noise is transmitted by a transceiving unit, wherein at least one second transmission signal with a second interfering component caused by the noise is transmitted at the same time as or in a manner temporally overlapping the first transmission signal by the transceiving unit, wherein the transmission signals are such that, if the transmission signals are processed further and evaluated, phase and/or frequency shifts resulting from the interfering components are at least partially compensated for.
    Type: Application
    Filed: May 11, 2018
    Publication date: March 18, 2021
    Inventors: Martin Vossiek, Michael Gottinger, Peter Gulden
  • Publication number: 20200309889
    Abstract: A wave-based method has at least two reference stations (1, 2) transmit signals (s1, s2; s3, s4). The signals are transmitted almost at the same time (S1, S2), are transmitted in the same frequency range, and are separable using a multiplexing method. At least one of the sending reference stations (1, 2), besides transmitting its own signal (s1, s2), also receives at least one signal (s2, s1) sent by another reference station (2, 1) at the same time and determines a time stagger (?1) and/or a phase angle between its own transmission and the reception with high precision. At least one receiving station (7) which at least receives the signals (s1, s2) receives the signals (s3, s4) from at least two of the reference stations (1, 2). A system and stations perform the wave-based method.
    Type: Application
    Filed: October 27, 2016
    Publication date: October 1, 2020
    Inventors: Martin VOSSIEK, Peter GULDEN, Fabian KIRSCH
  • Publication number: 20200186666
    Abstract: The invention refers to a system for analyzing a document. Each of two measurement arrangements includes two components being a radiation source and a radiation detector, respectively. The two measurement arrangements provide measurement data and differ from each other with regard to a measurement principle, a kind of radiation source, a kind of radiation detector, a kind of relative movement between the document and a component, a kind of relative arrangement of the two components to each other, a kind of emitted radiation, a kind of received radiation or a kind of processing information about radiation emitted by the respective radiation source and/or about radiation received by the respective radiation detector. An evaluator provides data based on the measurement data. The invention also refers to a corresponding method.
    Type: Application
    Filed: February 18, 2020
    Publication date: June 11, 2020
    Inventors: Tobias SCHOEN, Wolfgang HOLUB, Daniel STROMER, Andreas MAIER, Gisela ANTON, Michel THILO, Martin VOSSIEK, Jan SCHUER
  • Publication number: 20200110156
    Abstract: A radar target simulator for simulating radar targets is provided. The radar target simulator has an analogue-to-digital converter having a first clock generator and a digital-to-analogue converter having a second clock generator. The analogue-to-digital converter is configured to receive a radar signal transmitted by a radar system as an input signal, while the digital-to-analogue converter is configured to return an output signal to the radar system for simulation of the radar target. Further, the first and the second clock generator are configured to operate the analogue-to-digital converter and the digital-to-analogue converter at a different sampling rate in each case.
    Type: Application
    Filed: June 6, 2019
    Publication date: April 9, 2020
    Inventors: Sherif AHMED, Julian ADAMETZ, Martin VOSSIEK, Georg KÖRNER, Christian CARLOWITZ
  • Publication number: 20200018840
    Abstract: The invention relates to a radar system comprising: —at least a first (SE1) and a second (SE2) transmitting-receiving device with in each case at least one transmitting antenna and at least one receiving antenna as well as a HE generator, and —a common clock generator for the HF generators of the transmitting-receiving devices, wherein at least one evaluation device is provided, which is configured to process transmitting, and receiving signals of the transmitting-receiving, devices (SE1, SE2) to modified measurement signals with increased coherence.
    Type: Application
    Filed: February 26, 2018
    Publication date: January 16, 2020
    Inventors: Martin Vossiek, Michael Gottinger, Peter Gulden
  • Publication number: 20190107614
    Abstract: The invention relates to a radar method for determining the angular position, the location, and/or the velocity, in particular the vectorial velocity, of a target, wherein a first transceiver unit and at least one second transceiver unit, which is spatially separated in particular from the first transceiver unit, are not synchronized, but a measurement beginning of the first transceiver unit and the second transceiver unit is triggered in a wireless or wired manner with a chronological deviation ?tn, wherein measurements of the transceiver units are coherently processed.
    Type: Application
    Filed: October 10, 2018
    Publication date: April 11, 2019
    Inventors: Yassen Dobrev, Peter Gulden, Mark Christmann, Martin Vossiek, Michael Gottinger
  • Publication number: 20190004145
    Abstract: A method is described in particular for reducing interference due to phase noise in a radar system, in which in a first noncoherent transceiver unit (NKSE1) a first signal (sigTX1) is generated and transmitted, in particular emitted, via a path (SP), in a further, in particular second noncoherent transceiver unit (NKSE2), a first signal (sigTX2) is generated and transmitted, in particular emitted, via the path (SP), the signals (sigTX1 and sigTX2) are received directly or indirectly in the respective other transceiver unit and are processed further therein as received signals sigRX12 and sigRX21, in the first transceiver unit (NKSE1), a comparison signal (sigC12) is formed from its first signal (sigTX1) and from such a first signal (sigRTX2) received from the further transceiver unit (NKSE2) via the path (SP), and in the further transceiver unit (NKSE2), a further comparison signal (sigC21) is formed from its first signal (sigTX2) and from such a first signal (sigTX1) received from the first transceiver unit
    Type: Application
    Filed: January 3, 2017
    Publication date: January 3, 2019
    Inventors: Martin Vossiek, Micheil Gottinger, Fabian Kirsch, Peter Gulden
  • Publication number: 20180238995
    Abstract: A method serves for imaging polarimetry. A chipless, passive transponder which has a plurality of surface regions with different polarimetric properties is illuminated fully polarimetrically by radar radiation. At least one polarization-encoded image of the transponder is generated using the radar radiation reflected thereby, and the different surface regions of the transponder in the polarization-encoded image can be recognized by their at least one polarimetric property. The passive, chipless transponder has at least two surface regions with different polarimetric structures.
    Type: Application
    Filed: April 16, 2018
    Publication date: August 23, 2018
    Inventors: MARTIN VOSSIEK, JULIAN ADAMETZ, MAXIMILIAN POEPPERL
  • Publication number: 20170176583
    Abstract: The invention relates to a method in a radar system, wherein: in a first non-coherent transmitting-receiving unit (NKSE1), a first signal (sigTX1) is generated and is transmitted, in particular emitted, via a path (SP); in a further, in particular second non-coherent transmitting-receiving unit (NKSE2), a first signal (sigTX2) is generated and is sent, in particular emitted, via the path (SP); in the first transmitting-receiving unit (NKSE1), a comparison signal (sigC12) is formed from the first signal (sigTX1) of the first transmitting-receiving unit and from such a first signal (sigTX2) received from the further transmitting-receiving unit (NKSE2) via the path (SP); and in the further transmitting-receiving unit (NKSE2), a further comparison signal (sigC21) is formed from the first signal (sigTX2) of the further transmitting-receiving unit and from such a first signal (sigTX1) received from the first transmitting-receiving unit (NKSE1) via the path (SP), wherein the further comparison signal (sigC21) is tra
    Type: Application
    Filed: March 23, 2015
    Publication date: June 22, 2017
    Inventors: Peter Gulden, Martin Vossiek
  • Patent number: 8559554
    Abstract: A radio transmitter is provided at least comprising a signal generator for generating a continuous signal and an antenna for outputting a transmission signal, wherein at least one output of the signal generator is connected with at least one input of the antenna. Herein, the signal generator is connected with the antenna via an interrupt unit connected between the two for selectively interrupting and maintaining a signal connection between the signal generator and the antenna.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: October 15, 2013
    Assignee: Symeo GmbH
    Inventors: Martin Vossiek, Peter Gulden, Sven Röhr
  • Patent number: 8299959
    Abstract: The invention relates to an imaging method with synthetic aperture for determining an incident angle and/or a distance of a sensor from at least one object in space, wherein at each of a number of aperture points one echo profile is sensed. Advantageously, for several angles assumed as the incident angle, one phase correction value and/or one distance correction value is calculated, adapted profiles are generated based on the echo profiles by adapting the phase with the phase correction value for each assumed angle and/or by shifting the distance with the distance correction value, for the assumed angle, the adapted profiles are summed or integrated, and a probability distribution is derived, and a probability value for the incident angle and/or for the distance is determined therefrom. A determination of the incident angle is also possible independently of the distance, wherein it is possible to only consider velocities or accelerations.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: October 30, 2012
    Assignee: Symeo GmbH
    Inventors: Martin Vossiek, Stephan Max