Patents by Inventor MARY A. SKINNER

MARY A. SKINNER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11536710
    Abstract: A method of determining the result of an assay in a microfluidic device includes the steps of: dispensing a sample droplet onto a first portion of an electrode array of the microfluidic device; dispensing a reagent droplet onto a second portion of the electrode array of the microfluidic device; controlling actuation voltages applied to the electrode array to mix the sample droplet and the reagent droplet into a product droplet; sensing a dynamic property of the product droplet; and determining an assay of the sample droplet based on the sensed dynamic property. The dynamic property is a physical property of the product droplet that influences a transport property of the product droplet on the electrode array. Example dynamic properties of the product droplet include the moveable state, split-able state, and viscosity based on droplet properties. The method may be used to perform an amoebocyte lysate (LAL) assay.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: December 27, 2022
    Assignee: Sharp Life Science (EU) Limited
    Inventors: Benjamin James Hadwen, Adrian Marc Simon Jacobs, Jason Roderick Hector, Michael James Brownlow, Masahiro Adachi, Alison Mary Skinner, Mark Childs
  • Patent number: 11061015
    Abstract: A method of determining the result of an assay in a microfluidic device includes the steps of: dispensing a sample droplet onto a first portion of an electrode array of the microfluidic device; dispensing a reagent droplet onto a second portion of the electrode array of the microfluidic device; controlling actuation voltages applied to the electrode array to mix the sample droplet and the reagent droplet into a product droplet; sensing a dynamic property of the product droplet; and determining an assay of the sample droplet based on the sensed dynamic property. The dynamic property is a physical property of the product droplet that influences a transport property of the product droplet on the electrode array. Example dynamic properties of the product droplet include the moveable state, split-able state, and viscosity based on droplet properties. The method may be used to perform an amoebocyte lysate (LAL) assay.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: July 13, 2021
    Assignee: Sharp Life Science (EU) Limited
    Inventors: Benjamin James Hadwen, Adrian Marc Simon Jacobs, Jason Roderick Hector, Michael James Brownlow, Masahiro Adachi, Alison Mary Skinner, Mark Childs
  • Publication number: 20210148890
    Abstract: A method of determining the result of an assay in a microfluidic device includes the steps of: dispensing a sample droplet onto a first portion of an electrode array of the microfluidic device; dispensing a reagent droplet onto a second portion of the electrode array of the microfluidic device; controlling actuation voltages applied to the electrode array to mix the sample droplet and the reagent droplet into a product droplet; sensing a dynamic property of the product droplet; and determining an assay of the sample droplet based on the sensed dynamic property. The dynamic property is a physical property of the product droplet that influences a transport property of the product droplet on the electrode array. Example dynamic properties of the product droplet include the moveable state, split-able state, and viscosity based on droplet properties. The method may be used to perform an amoebocyte lysate (LAL) assay.
    Type: Application
    Filed: January 6, 2021
    Publication date: May 20, 2021
    Inventors: Benjamin James Hadwen, Adrian Marc Simon Jacobs, Jason Roderick Hector, Michael James Brownlow, Masahiro Adachi, Alison Mary Skinner, Mark Childs
  • Patent number: 10207485
    Abstract: An ignition coil includes a magnetically-permeable core; a primary winding disposed outward of the core; a secondary winding disposed outward of the primary winding, inductively coupled to the primary winding, and terminating at one end thereof in a low-voltage end and terminates at another end thereof in a high-voltage which is electrically connected directly to a terminal through an electrically conductive polymer; and a case defining an interior having an interior surface such that the core, the primary winding, and the secondary winding are received within the interior of the case such that the at least one of the low-voltage end and the high-voltage end, the terminal, and the electrically conductive polymer are disposed within the recess and such that the electrically conductive polymer is in direct contact with the interior surface within the recess.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: February 19, 2019
    Assignee: DELPHI TECHNOLOGIES IP LIMITED
    Inventors: Albert Anthony Skinner, Harry Oliver Levers, Jr., Mary A. Skinner, Marco Meza
  • Publication number: 20180015712
    Abstract: An ignition coil includes a magnetically-permeable core; a primary winding disposed outward of the core; a secondary winding disposed outward of the primary winding, inductively coupled to the primary winding, and terminating at one end thereof in a low-voltage end and terminates at another end thereof in a high-voltage which is electrically connected directly to a terminal through an electrically conductive polymer; and a case defining an interior having an interior surface such that the core, the primary winding, and the secondary winding are received within the interior of the case such that the at least one of the low-voltage end and the high-voltage end, the terminal, and the electrically conductive polymer are disposed within the recess and such that the electrically conductive polymer is in direct contact with the interior surface within the recess.
    Type: Application
    Filed: September 13, 2017
    Publication date: January 18, 2018
    Inventors: Albert Anthony Skinner, Harry Oliver Levers, JR., Mary A. Skinner, Marco Meza
  • Patent number: 9796165
    Abstract: An ignition coil for delivering a spark-generating current to a spark plug includes a magnetically-permeable core; a primary winding disposed outward of the core; and a secondary winding disposed outward of the primary winding and inductively coupled to the primary winding. The secondary winding terminates at one end thereof in a low-voltage end and terminates at another end thereof in a high-voltage end. At least one of the low-voltage end of the secondary winding and the high-voltage end of the secondary winding is electrically connected directly to a terminal through an electrically conductive polymer.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: October 24, 2017
    Assignee: DELPHI TECHNOLOGIES, INC.
    Inventors: Albert A. Skinner, Harry O. Levers, Jr., Mary A. Skinner, Marco Meza
  • Publication number: 20170056887
    Abstract: A method of determining the result of an assay in a microfluidic device includes the steps of: dispensing a sample droplet onto a first portion of an electrode array of the microfluidic device; dispensing a reagent droplet onto a second portion of the electrode array of the microfluidic device; controlling actuation voltages applied to the electrode array to mix the sample droplet and the reagent droplet into a product droplet; sensing a dynamic property of the product droplet; and determining an assay of the sample droplet based on the sensed dynamic property. The dynamic property is a physical property of the product droplet that influences a transport property of the product droplet on the electrode array. Example dynamic properties of the product droplet include the moveable state, split-able state, and viscosity based on droplet properties. The method may be used to perform an amoebocyte lysate (LAL) assay.
    Type: Application
    Filed: August 28, 2015
    Publication date: March 2, 2017
    Inventors: Benjamin James Hadwen, Adrian Marc Simon Jacobs, Jason Roderick Hector, Michael James Brownlow, Masahiro Adachi, Alison Mary Skinner, Mark Childs
  • Publication number: 20170059523
    Abstract: A method of determining the result of an assay in a microfluidic device includes the steps of: dispensing a sample droplet onto a first portion of an electrode array of the microfluidic device; dispensing a reagent droplet onto a second portion of the electrode array of the microfluidic device; controlling actuation voltages applied to the electrode array to mix the sample droplet and the reagent droplet into a product droplet; sensing a dynamic property of the product droplet; and determining an assay of the sample droplet based on the sensed dynamic property. The dynamic property is a physical property of the product droplet that influences a transport property of the product droplet on the electrode array. Example dynamic properties of the product droplet include the moveable state, split-able state, and viscosity based on droplet properties. The method may be used to perform an amoebocyte lysate (LAL) assay.
    Type: Application
    Filed: August 28, 2015
    Publication date: March 2, 2017
    Inventors: Benjamin James Hadwen, Adrian Marc Simon Jacobs, Jason Roderick Hector, Michael James Brownlow, Masahiro Adachi, Alison Mary Skinner, Mark Childs
  • Publication number: 20150167622
    Abstract: An ignition coil for delivering a spark-generating current to a spark plug includes a magnetically-permeable core; a primary winding disposed outward of the core; and a secondary winding disposed outward of the primary winding and inductively coupled to the primary winding. The secondary winding terminates at one end thereof in a low-voltage end and terminates at another end thereof in a high-voltage end. At least one of the low-voltage end of the secondary winding and the high-voltage end of the secondary winding is electrically connected directly to a terminal through an electrically conductive polymer.
    Type: Application
    Filed: November 3, 2014
    Publication date: June 18, 2015
    Inventors: ALBERT A. SKINNER, HARRY O. LEVERS, JR., MARY A. SKINNER, MARCO MEZA