Patents by Inventor Mary Louise Mandich

Mary Louise Mandich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9433907
    Abstract: A method and apparatus is disclosed wherein the movement of a droplet disposed on a nanostructured or microstructured surface is determined by at least one characteristic of the nanostructure feature pattern or at least one characteristic of the droplet. In one embodiment, the movement of the droplet is laterally determined by at least one characteristic of the nanostructure feature pattern such that the droplet moves in a desired direction along a nanostructured feature pattern. In another embodiment, the movement of the droplet is determined by either at least one characteristic of the nanostructure feature pattern or at least one characteristic of the droplet in a way such that the droplet penetrates the feature pattern at a desired area and becomes substantially immobile.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: September 6, 2016
    Assignee: Alcatel Lucent
    Inventors: Avinoam Kornblit, Thomas Nikita Krupenkin, Mary Louise Mandich, Tobias Manuel Schneider, Joseph Ashley Taylor, Shu Yang
  • Patent number: 8187894
    Abstract: A method and apparatus is disclosed wherein the flow resistance of a droplet disposed on a nanostructured or microstructured surface is controlled. A closed-cell feature is used in a way such that, when the pressure of at least a first fluid within one or more of the cells of said surface is decreased to or below a desired level, a droplet disposed on that surface is caused to at least partially penetrate the surface. In another illustrative embodiment, the pressure within one or more of the cells is increased to or above a desired level in a way such that the droplet of liquid is returned at least partially to its original, unpenetrated position. In yet another embodiment, a closed-cell structure feature pattern is used to prevent penetration of the nanostructured or microstructured surface, even when the pressure of the fluid disposed on the surface is relatively high.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: May 29, 2012
    Assignee: Alcatel Lucent
    Inventors: Marc Scott Hodes, Paul Robert Kolodner, Timofei Nikita Kroupenkine, Alan Michael Lyons, Mary Louise Mandich, Joseph Ashley Taylor
  • Publication number: 20120060937
    Abstract: A method and apparatus is disclosed wherein the flow resistance of a droplet disposed on a nanostructured or microstructured surface is controlled. A closed-cell feature is used in a way such that, when the pressure of at least a first fluid within one or more of the cells of said surface is decreased to or below a desired level, a droplet disposed on that surface is caused to at least partially penetrate the surface. In another illustrative embodiment, the pressure within one or more of the cells is increased to or above a desired level in a way such that the droplet of liquid is returned at least partially to its original, unpenetrated position. In yet another embodiment, a closed-cell structure feature pattern is used to prevent penetration of the nanostructured or microstructured surface, even when the pressure of the fluid disposed on the surface is relatively high.
    Type: Application
    Filed: November 22, 2011
    Publication date: March 15, 2012
    Inventors: Marc Scott Hodes, Paul Robert Kolodner, Timofei Nikita Kroupenkine, Alan Michael Lyons, Mary Louise Mandich, Joseph Ashley Taylor
  • Patent number: 8124423
    Abstract: A method and apparatus is disclosed wherein the flow resistance of a droplet disposed on a nanostructured or microstructured surface is controlled. A closed-cell feature is used in a way such that, when the pressure of at least a first fluid within one or more of the cells of said surface is decreased to or below a desired level, a droplet disposed on that surface is caused to at least partially penetrate the surface. In another illustrative embodiment, the pressure within one or more of the cells is increased to or above a desired level in a way such that the droplet of liquid is returned at least partially to its original, unpenetrated position. In yet another embodiment, a closed-cell structure feature pattern is used to prevent penetration of the nanostructured or microstructured surface, even when the pressure of the fluid disposed on the surface is relatively high.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: February 28, 2012
    Assignee: Alcatel Lucent
    Inventors: Marc Scott Hodes, Paul Robert Kolodner, Timofei Nikita Kroupenkine, Alan Michael Lyons, Mary Louise Mandich, Joseph Ashley Taylor
  • Patent number: 7935437
    Abstract: A battery includes a plurality of closed cells disposed in a predetermined feature pattern on at least a first surface of an electrode. Each of the closed cells has an inner surface. The battery also includes a plurality of cell electrodes. Each of the cell electrodes is disposed along a portion of the inner surface of a respective one of the closed cells in the plurality of closed cells.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: May 3, 2011
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Marc Scott Hodes, Paul Robert Kolodner, Timofei Nikita Kroupenkine, Alan Michael Lyons, Mary Louise Mandich, Joseph Ashley Taylor, Donald Weiss
  • Patent number: 7833653
    Abstract: A battery having an electrode with at least one nanostructured surface is disclosed wherein the nanostructured surface is divided into cells and is disposed in a way such that an electrolyte fluid of the battery is prevented from contacting the portion of electrode associated with each cell. When a voltage is passed over the nanostructured surface associated with a particular cell, the electrolyte fluid is caused to penetrate the nanostructured surface of that cell and to contact the electrode, thus activating the portion of the battery associated with that cell. The current/voltage generated by the battery is controlled by selectively activating only a portion of the cells. Multiple cells can be active simultaneously to produce the desired voltage. The more cells that are active, the higher the current/voltage and the lower the overall life of the battery. The life of the battery can be extended by activating fewer cells simultaneously.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: November 16, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Marc Scott Hodes, Paul Robert Kolodner, Thomas Nikita Krupenkin, Alan Michael Lyons, Mary Louise Mandich, Joseph Ashley Taylor, Donald Weiss
  • Publication number: 20100247982
    Abstract: A battery having an electrode with at least one nanostructured surface is disclosed wherein the nanostructured surface is divided into cells and is disposed in a way such that an electrolyte fluid of the battery is prevented from contacting the portion of electrode associated with each cell. When a voltage is passed over the nanostructured surface associated with a particular cell, the electrolyte fluid is caused to penetrate the nanostructured surface of that cell and to contact the electrode, thus activating the portion of the battery associated with that cell. The current/voltage generated by the battery is controlled by selectively activating only a portion of the cells. Multiple cells can be active simultaneously to produce the desired voltage. The more cells that are active, the higher the current/voltage and the lower the overall life of the battery. The life of the battery can be extended by activating fewer cells simultaneously.
    Type: Application
    Filed: June 11, 2010
    Publication date: September 30, 2010
    Applicant: Lucent Technologies Inc.
    Inventors: Marc Scott Hodes, Paul Robert Kolodner, Thomas Nikita Krupenkln, Alan Michael Lyons, Mary Louise Mandich, Joseph Ashley Taylor, Donald Weiss
  • Publication number: 20100221597
    Abstract: A battery having a nanostructured battery electrode is disclosed wherein it is possible to reverse the contact of the electrolyte with the battery electrode and, thus, to return a battery to a reserve state after it has been used to generate current. In order to achieve this reversibility, the nanostructures on the battery electrode comprise a plurality of closed cells and the pressure within the enclosed cells is varied. In a first embodiment, the pressure is varied by varying the temperature of a fluid within the cells by, for example, applying a voltage to electrodes disposed within said cells. In a second illustrative embodiment, once the battery has been fully discharged, the battery is recharged and then the electrolyte fluid is expelled from the cells in a way such that it is no longer in contact with the battery electrode.
    Type: Application
    Filed: May 6, 2010
    Publication date: September 2, 2010
    Applicant: Lucent Technologies Inc.
    Inventors: Marc Scott Hodes, Paul Robert Kolodner, Timofei Nikita Kroupenkine, Alan Michael Lyons, Mary Louise Mandich, Joseph Ashley Taylor, Donald Weiss
  • Patent number: 7785733
    Abstract: A battery having an electrode with at least one nanostructured surface is disclosed wherein the nanostructured surface is divided into cells and is disposed in a way such that an electrolyte fluid of the battery is prevented from contacting the portion of electrode associated with each cell. When a voltage is passed over the nanostructured surface associated with a particular cell, the electrolyte fluid is caused to penetrate the nanostructured surface of that cell and to contact the electrode, thus activating the portion of the battery associated with that cell. The current/voltage generated by the battery is controlled by selectively activating only a portion of the cells. Multiple cells can be active simultaneously to produce the desired voltage. The more cells that are active, the higher the current/voltage and the lower the overall life of the battery. The life of the battery can be extended by activating fewer cells simultaneously.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: August 31, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Marc Scott Hodes, Paul Robert Kolodner, Thomas Nikita Krupenkin, Alan Michael Lyons, Mary Louise Mandich, Joseph Ashley Taylor, Donald Weiss
  • Publication number: 20100183906
    Abstract: A battery having an electrode with at least one nanostructured surface is disclosed wherein the nanostructured surface is divided into cells and is disposed in a way such that an electrolyte fluid of the battery is prevented from contacting the portion of electrode associated with each cell. When a voltage is passed over the nanostructured surface associated with a particular cell, the electrolyte fluid is caused to penetrate the nanostructured surface of that cell and to contact the electrode, thus activating the portion of the battery associated with that cell. The current/voltage generated by the battery is controlled by selectively activating only a portion of the cells. Multiple cells can be active simultaneously to produce the desired voltage. The more cells that are active, the higher the current/voltage and the lower the overall life of the battery. The life of the battery can be extended by activating fewer cells simultaneously.
    Type: Application
    Filed: March 18, 2004
    Publication date: July 22, 2010
    Inventors: Marc Scott Hodes, Paul Robert Kolodner, Timofei Nikita Kroupenkine, Alan Michael Lyons, Mary Louise Mandich, Joseph Ashley Taylor, Donald Weiss
  • Patent number: 7749646
    Abstract: A battery having a nanostructured battery electrode is disclosed wherein it is possible to reverse the contact of the electrolyte with the battery electrode and, thus, to return a battery to a reserve state after it has been used to generate current. In order to achieve this reversibility, the nanostructures on the battery electrode comprise a plurality of closed cells and the pressure within the enclosed cells is varied. In a first embodiment, the pressure is varied by varying the temperature of a fluid within the cells by, for example, applying a voltage to electrodes disposed within said cells. In a second illustrative embodiment, once the battery has been fully discharged, the battery is recharged and then the electrolyte fluid is expelled from the cells in a way such that it is no longer in contact with the battery electrode.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: July 6, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Marc Scott Hodes, Paul Robert Kolodner, Timofei Nikita Kroupenkine, Alan Michael Lyons, Mary Louise Mandich, Joseph Ashley Taylor, Donald Weiss
  • Patent number: 7455021
    Abstract: A method and apparatus is disclosed wherein nanostructures or microstructures are disposed on a surface of a body (such as a submersible vehicle) that is adapted to move through a fluid, such as water. The nanostructures or microstructures are disposed on the surface in a way such that the contact between the surface and the fluid is reduced and, correspondingly, the friction between the surface and the fluid is reduced. In an illustrative embodiment, the surface is a surface on a submarine or other submersible vehicle (such as a torpedo). Illustratively, electrowetting principles are used to cause the fluid to at least partially penetrate the nanostructures or microstructures on the surface of the body in order to selectively create greater friction in a desired location of the surface. Such penetration may be used, for example, to create drag that alters the direction or speed of travel of the body.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: November 25, 2008
    Assignee: Lucent Technologies Inc.
    Inventors: Avinoam Kornblit, Timofei Nikita Kroupenkine, Mary Louise Mandich, Tobias Manuel Schneider, Joseph Ashley Taylor, Donald Weiss, Shu Yang
  • Publication number: 20080236473
    Abstract: A method and apparatus is disclosed wherein nanostructures or microstructures are disposed on a surface of a body (such as a submersible vehicle) that is adapted to move through a fluid, such as water. The nanostructures or microstructures are disposed on the surface in a way such that the contact between the surface and the fluid is reduced and, correspondingly, the friction between the surface and the fluid is reduced. In an illustrative embodiment, the surface is a surface on a submarine or other submersible vehicle (such as a torpedo). Illustratively, electrowetting principles are used to cause the fluid to at least partially penetrate the nanostructures or microstructures on the surface of the body in order to selectively create greater friction in a desired location of the surface. Such penetration may be used, for example, to create drag that alters the direction or speed of travel of the body.
    Type: Application
    Filed: September 11, 2006
    Publication date: October 2, 2008
    Inventors: Avinoam Kornblit, Timofei Nikita Kroupenkine, Mary Louise Mandich, Tobias Manuel Schneider, Joseph Ashley Taylor, Donald Weiss, Shu Yang
  • Patent number: 7323033
    Abstract: A nanostructured substrate is disclosed having a plurality of substrate openings disposed between the nanostructures on the substrate. When a desired fluid comes into contact with the substrate, at least a portion of the fluid is allowed to pass through at least one of the openings. In a first embodiment, the fluid is caused to pass through the openings by causing the fluid to penetrate the nanostructures. In a second embodiment, the substrate is a flexible substrate so that when a mechanical force is applied to the substrate, such as a bending or stretching force, the distance between nanoposts or the diameter of nanocells on the substrate increases and the liquid penetrates the nanostructures. In another embodiment, a first fluid, such as water, is prevented from penetrating the nanostructures on the substrate while a second fluid is permitted to pass through the substrate via the openings in the substrate.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: January 29, 2008
    Assignee: Lucent Technologies Inc.
    Inventors: Timofei Nikita Kroupenkine, Mary Louise Mandich, Joseph Ashley Taylor
  • Patent number: 7156032
    Abstract: A method and apparatus is disclosed wherein nanostructures or microstructures are disposed on a surface of a body (such as a submersible vehicle) that is adapted to move through a fluid, such as water. The nanostructures or microstructures are disposed on the surface in a way such that the contact between the surface and the fluid is reduced and, correspondingly, the friction between the surface and the fluid is reduced. In an illustrative embodiment, the surface is a surface on a submarine or other submersible vehicle (such as a torpedo). Illustratively, electrowetting principles are used to cause the fluid to at least partially penetrate the nanostructures or microstructures on the surface of the body in order to selectively create greater friction in a desired location of the surface. Such penetration may be used, for example, to create drag that alters the direction or speed of travel of the body.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: January 2, 2007
    Assignee: Lucent Technologies Inc.
    Inventors: Avinoam Kornblit, Timofei Nikita Kroupenkine, Mary Louise Mandich, Tobias Manuel Schneider, Joseph Ashley Taylor, Donald Weiss, Shu Yang
  • Patent number: 7048889
    Abstract: A biological/chemical detector is disclosed that is capable of manipulating liquids, such as reagent droplets, without relying on microchannels. In a first embodiment, fluid flow is passed through the detector, thus causing particles wholly or partially containing an illustrative chemical compound or biological species to be collected on the tips of nanostructures in the detector. A droplet of liquid is moved across the tips of the nanostructures, thus absorbing the particles into the liquid. The droplet is caused to penetrate the nanostructures in a desired location, thus causing the chemical compound or biological species in said liquid droplet to come into contact with, for example, a reagent. In another embodiment, a fluid flow is passed through the nanostructured surfaces of the detector such that the chemical compound and/or biological species are deposited between the nanoposts of a desired pixel.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: May 23, 2006
    Assignee: Lucent Technologies Inc.
    Inventors: Susanne Arney, Timofei Nikita Kroupenkine, Alan Michael Lyons, Mary Louise Mandich, Michael J Schabel, Joseph Ashley Taylor
  • Publication number: 20040191127
    Abstract: A method and apparatus is disclosed wherein the movement of a droplet disposed on a nanostructured or microstructured surface is determined by at least one characteristic of the nanostructure feature pattern or at least one characteristic of the droplet. In one embodiment, the movement of the droplet is laterally determined by at least one characteristic of the nanostructure feature pattern such that the droplet moves in a desired direction along a nanostructured feature pattern. In another embodiment, the movement of the droplet is determined by either at least one characteristic of the nanostructure feature pattern or at least one characteristic of the droplet in a way such that the droplet penetrates the feature pattern at a desired area and becomes substantially immobile.
    Type: Application
    Filed: March 31, 2003
    Publication date: September 30, 2004
    Inventors: Avinoam Kornblit, Timofei Nikita Kroupenkine, Mary Louise Mandich, Tobias Manual Schneider, Joseph Ashley Taylor, Shu Yang
  • Patent number: 6748767
    Abstract: Fiber is drawn from a preform comprising a silica body, e.g., a sol-gel derived overcladding or substrate tube. Prior to sintering, the body is treated with a gaseous mixture containing one or more non-oxygenated sulfur halides, to remove and/or reduce the size of refractory oxide particles, and/or dehydroxylate the body. Removal of metal oxide particles or reduction in their size contributes to drawing of optical fiber exhibiting desirable strength, since such particles act as initiation sites for breakage. Advantageously, the halides include sulfur chlorides, which provide desirable improvements compared to treatment by oxygenated sulfur chlorides such as thionyl chloride (SOCl2).
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: June 15, 2004
    Assignee: Lucent Technologies Inc.
    Inventors: Mary Louise Mandich, William David Reents, Jr.
  • Patent number: 6665127
    Abstract: A tunable microlens uses a layer of photo-conducting material which results in a voltage differential between at least one of a plurality of electrodes and a droplet of conducting liquid when a light beam is incident upon the photo-conducting material. Such droplet, which forms the optics of the microlens, moves toward an electrode with higher voltage relative to other electrodes in the microlens. Thus, for example, when the light beam is misaligned with the microlens, the voltage differential causes the droplet, and hence the microlens, to realign itself with the beam.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: December 16, 2003
    Assignee: Lucent Technologies Inc.
    Inventors: Zhenan Bao, Timofei Nikita Kroupenkine, Alan Michael Lyons, Mary Louise Mandich, Louis Thomas Manzione, Elsa Reichmanis, Shu Yang
  • Publication number: 20030202256
    Abstract: A tunable microlens uses a layer of photo-conducting material which results in a voltage differential between at least one of a plurality of electrodes and a droplet of conducting liquid when a light beam is incident upon the photo-conducting material. Such a droplet, which forms the optics of the microlens, moves toward an electrode with a higher voltage relative to other electrodes in the microlens. In one embodiment, when a misalignment of the beam and microlens occurs, an electronic circuit creates the aforementioned differential. In a second embodiment, two layers of electrodes are used, an upper layer and a lower layer. Each electrode in a lower layer of electrodes is electrically coupled to an electrode in the upper layer directly opposed to the lower-layer electrode. When the light beam is misaligned with the microlens, a voltage differential between the droplet and the electrodes in the upper layer automatically causes the droplet, and hence the microlens, to realign itself with the beam.
    Type: Application
    Filed: April 30, 2002
    Publication date: October 30, 2003
    Inventors: Zhenan Bao, Timofei Nikita Kroupenkine, Alan Michael Lyons, Mary Louise Mandich, Louis Thomas Manzione, Elsa Reichmanis, Shu Yang