Patents by Inventor Mary Roby

Mary Roby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8409458
    Abstract: Provided is a process for manufacturing a diamond like carbon layer. The process for manufacturing the diamond like carbon layer includes, without limitation, forming a layer of diamond like carbon over a substrate, and reactive ion etching the layer of diamond like carbon.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: April 2, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Erika Leigh Shoemaker, Maria Wang, Mary Roby, Stuart Jacobsen
  • Patent number: 7795070
    Abstract: Provided is a method for manufacturing a semiconductor device. The method for manufacturing the semiconductor device, without limitation, includes forming a first semiconductor layer over a substrate, and forming a second semiconductor layer over the first semiconductor layer, wherein an amorphous nitrided silicon adhesion layer is located between and adheres the first and second semiconductor layers.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: September 14, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Maria Wang, Erika Leigh Shoemaker, Mary Roby, Stuart Jacobsen
  • Publication number: 20080237865
    Abstract: Provided is a method for manufacturing a semiconductor device. The method for manufacturing the semiconductor device, without limitation, includes forming a first semiconductor layer over a substrate, and forming a second semiconductor layer over the first semiconductor layer, wherein an amorphous nitrided silicon adhesion layer is located between and adheres the first and second semiconductor layers.
    Type: Application
    Filed: March 30, 2007
    Publication date: October 2, 2008
    Applicant: Texas Instruments Incorporated
    Inventors: Maria Wang, Erika Leigh Shoemaker, Mary Roby, Stuart Jacobsen
  • Publication number: 20080213927
    Abstract: Provided, in one embodiment, is a method for manufacturing a resistive structure. This method, without limitation, includes forming a substrate, and forming a tantalum-aluminum-nitride resistive layer over the substrate. Moreover, a bulk resistivity of the tantalum-aluminum-nitride resistive layer may be adjusted by varying at least one deposition condition selected from the group consisting of a flow rate ratio of nitrogen to argon, power, pressure, temperature and radio frequency (RF) bias voltage.
    Type: Application
    Filed: March 2, 2007
    Publication date: September 4, 2008
    Applicant: Texas Instruments Incorporated
    Inventors: Maria Wang, Erika Leigh Shoemaker, Mary Roby, Stuart Jacobsen
  • Publication number: 20080214016
    Abstract: Provided is a process for manufacturing a diamond like carbon layer. The process for manufacturing the diamond like carbon layer includes, without limitation, forming a layer of diamond like carbon over a substrate, and reactive ion etching the layer of diamond like carbon.
    Type: Application
    Filed: March 2, 2007
    Publication date: September 4, 2008
    Applicant: Texas Instruments Incorporated
    Inventors: Erika Leigh Shoemaker, Maria Wang, Mary Roby, Stuart Jacobsen
  • Publication number: 20080214007
    Abstract: Provided is a method for removing diamond like carbon residue from a deposition chamber. This method, in one embodiment, may include subjecting a deposition chamber including diamond like carbon residue to a plasma clean in the presence of fluorine containing gas and oxygen containing gas. The method may further include purging the deposition chamber having been subjected to the plasma clean with an inert gas, and pumping the deposition chamber having been subjected to the plasma clean.
    Type: Application
    Filed: March 2, 2007
    Publication date: September 4, 2008
    Applicant: Texas Instruments Incorporated
    Inventors: Maria Wang, Erika Leigh Shoemaker, Mary Roby, Stuart Jacobsen
  • Patent number: 7401875
    Abstract: A thermal inkjet printhead 100 of the present invention includes a heating element 110, an ink chamber, control circuitry 108, an ink reservoir, and a memory array 106. The control circuitry 108 causes the heating element to generate thermal energy thereby causing ink within the ink chamber to generate bubbles of ink, which are then expelled through a nozzle. The ink reservoir replenishes used ink in the ink chamber. The memory array 106 stores and provides the identification parameters for the thermal inkjet printhead 100. The identification parameters are typically provided during initialization of the printer and include color(s) of ink (e.g., black, green, red, blue), a number of nozzles on the thermal inkjet printhead, an addressing frequency, nozzle spacing, heating architecture, and the like.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: July 22, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Stuart M. Jacobsen, Mary Roby, Erika Shoemaker, Maria Wang
  • Publication number: 20060274124
    Abstract: A thermal inkjet printhead 100 of the present invention includes a heating element 110, an ink chamber, control circuitry 108, an ink reservoir, and a memory array 106. The control circuitry 108 causes the heating element to generate thermal energy thereby causing ink within the ink chamber to generate bubbles of ink, which are then expelled through a nozzle. The ink reservoir replenishes used ink in the ink chamber. The memory array 106 stores and provides the identification parameters for the thermal inkjet printhead 100. The identification parameters are typically provided during initialization of the printer and include color(s) of ink (e.g., black, green, red, blue), a number of nozzles on the thermal inkjet printhead, an addressing frequency, nozzle spacing, heating architecture, and the like.
    Type: Application
    Filed: July 27, 2006
    Publication date: December 7, 2006
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Stuart Jacobsen, Mary Roby, Erika Shoemaker, Maria Wang
  • Publication number: 20060274125
    Abstract: A thermal inkjet printhead 100 of the present invention includes a heating element 110, an ink chamber, control circuitry 108, an ink reservoir, and a memory array 106. The control circuitry 108 causes the heating element to generate thermal energy thereby causing ink within the ink chamber to generate bubbles of ink, which are then expelled through a nozzle. The ink reservoir replenishes used ink in the ink chamber. The memory array 106 stores and provides the identification parameters for the thermal inkjet printhead 100. The identification parameters are typically provided during initialization of the printer and include color(s) of ink (e.g., black, green, red, blue), a number of nozzles on the thermal inkjet printhead, an addressing frequency, nozzle spacing, heating architecture, and the like.
    Type: Application
    Filed: July 27, 2006
    Publication date: December 7, 2006
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Stuart Jacobsen, Mary Roby, Erika Shoemaker, Maria Wang
  • Publication number: 20060007258
    Abstract: A thermal inkjet printhead 100 of the present invention includes a heating element 110, an ink chamber, control circuitry 108, an ink reservoir, and a memory array 106. The control circuitry 108 causes the heating element to generate thermal energy thereby causing ink within the ink chamber to generate bubbles of ink, which are then expelled through a nozzle. The ink reservoir replenishes used ink in the ink chamber. The memory array 106 stores and provides the identification parameters for the thermal inkjet printhead 100. The identification parameters are typically provided during initialization of the printer and include color(s) of ink (e.g., black, green, red, blue), a number of nozzles on the thermal inkjet printhead, an addressing frequency, nozzle spacing, heating architecture, and the like.
    Type: Application
    Filed: July 9, 2004
    Publication date: January 12, 2006
    Inventors: Stuart Jacobsen, Mary Roby, Erika Shoemaker, Maria Wang
  • Patent number: 6973637
    Abstract: The present invention provides a non-global process for designing an integrated circuit layout. The process comprises locating an isolated layout feature of an integrated circuit layout and non-globally changing at least one lateral dimension of the isolated layout feature to obtain an optimized increment. The change in lateral dimension by the optimized increment does not violate a minimum separation distance between the isolated layout feature and the other adjacent layout features. The process may be incorporated into a system for non-globally modifying an integrated circuit layout, described in a data file or an integrated circuit design system.
    Type: Grant
    Filed: May 12, 2003
    Date of Patent: December 6, 2005
    Assignee: Agere Systems Inc.
    Inventors: John M. Sharpe, Jerome Chu, Matthew Moucheron, Mary Roby
  • Publication number: 20040230938
    Abstract: The present invention provides a non-global process for designing an integrated circuit layout. The process comprises locating an isolated layout feature of an integrated circuit layout and non-globally changing at least one lateral dimension of the isolated layout feature to obtain an optimized increment. The change in lateral dimension by the optimized increment does not violate a minimum separation distance between the isolated layout feature and the other adjacent layout features. The process may be incorporated into a system for non-globally modifying an integrated circuit layout, described in a data file or an integrated circuit design system.
    Type: Application
    Filed: May 12, 2003
    Publication date: November 18, 2004
    Applicant: Agere Systems, Inc.
    Inventors: John M. Sharpe, Jerome Chu, Matthew Moucheron, Mary Roby