Patents by Inventor Masaaki Okada

Masaaki Okada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200382666
    Abstract: An image reading device includes light guides (5, 6) that emit light to an object to be read, a lens body (8) that condenses reflected light, a light receiver (13) that receives the reflected light, a sensor board (24) on which is mounted the light receiver (13), a lens holder (11), and a housing (9) that houses or holds these components. The lens holder (11) includes a holder bottom (11g), light guide positioners (11a, 11b) and lens body holders (11e, 11f). In the lens holder (11), the lens body (8) is attached between the lens body holders (11e, 11f), the sensor board (24) is attached to the holder bottom (11g) such that the light receiver (13) aligns with an optical axis of the lens body (8), and the light guides (5, 6) are attached to the light guide positioners (11a, 11b). A surface of each light guide positioner (11a, 11b) that faces the corresponding light guide (5, 6) to be attached has at least a portion having a same shape a s a shape of a surface of the light guide.
    Type: Application
    Filed: December 7, 2018
    Publication date: December 3, 2020
    Applicant: Mitsubishi Electric Corporation
    Inventors: Daisuke OHAMA, Hideki KUNISHIO, Masaaki OKADA, Yuki OKUHIGASHI, Masahiko TAKASHINA, Masaki WAKISAKA
  • Publication number: 20200277465
    Abstract: A novel or improved base film for impregnation, impregnated base film, product incorporating the impregnated base film, and/or related methods as shown, claimed or described herein.
    Type: Application
    Filed: September 12, 2018
    Publication date: September 3, 2020
    Inventors: Takahiko Kondo, Masaaki Okada, Stefan Reinartz, Daniel R. Alexander
  • Patent number: 10663320
    Abstract: A magnetic sensor device includes a magnet to form a magnetic field in a conveyance path of a detection target, a magnetoresistance effect element to output a change in the magnetic field as a change in a resistance value, a casing to enclose or hold the magnet and the magnetoresistance effect element, a cover to cover the magnetoresistance effect element and form a conveyance path surface that is a surface along the conveyance path, and a signal amplification board having a signal amplification IC disposed on an intersection surface that intersects the conveyance path surface. The signal amplification IC amplifies the change in the resistance value that is output by the magnetoresistance effect element. The change in the resistance value depends on the change in the magnetic field caused due to conveyance of the detection target on the conveyance path surface.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: May 26, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hiroaki Kahara, Masaaki Okada, Tatsuya Kunieda, Tomokazu Ogomi, Hideki Matsui, Sadaaki Yoshioka
  • Patent number: 10661424
    Abstract: An electric power tool includes a motor, an output shaft, a drive force transmission configured to reduce drive speed of the motor and transmit drive force of the motor to the output shaft; a trigger that can be pulled by a user; a rotation speed changing circuitry configured to change a rotation speed of the output shaft that corresponds to a maximum pulled amount of the trigger to a limited rotation speed that is lower than a maximum rotation speed of the output shaft in a non-limited rotation speed mode; and a rotation speed control circuitry configured to control a rotation speed of the motor in correspondence with a pulled, amount of the trigger to obtain the rotation speed of the output shaft that is changed by the rotation speed changing circuitry.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: May 26, 2020
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Fumiaki Sawano, Masaaki Okada, Hidekazu Yuasa
  • Publication number: 20200161618
    Abstract: Described herein, are battery separators, comprising the following: a microporous polymeric film; and an optional coating layer on at least one side of the microporous polymeric film, wherein at least one of the microporous polymeric film and the optional coating comprises an additive. The additive is selected from the group consisting of a lubricating agent, a plasticizing agent, a nucleating agent, a shrinkage reducing agent, a surfactant, an SEI improving agent, a cathode protection agent, a flame retardant additive, LiPF6 salt stabilizer, an overcharge protector, an aluminum corrosion inhibitor, a lithium deposition agent or improver, or a solvation enhancer, an aluminum corrosion inhibitor, a wetting agent, and a viscosity improver. Also, described herein are batteries, including lithium-ion batteries, comprising one or more of the described separators. Methods for making the battery separators are also described.
    Type: Application
    Filed: November 7, 2017
    Publication date: May 21, 2020
    Inventors: Changqing Wang Adams, Kang Karen Xiao, Stefan Reinartz, Masaaki Okada, Brian R. Stepp, Yao Lu, Eric Robert White, Katharine Chemelewski
  • Patent number: 10620015
    Abstract: A magnetic sensor device includes: a magnetic circuit for forming a magnetic field, a magnetoresistance effect element, and a heat dissipater. The magnetoresistance effect element outputs changes in the magnetic field as changes in a resistance value, and is arranged on a surface (of a +Z side) of the magnetic circuit at a conveyance path side thereof. The heat dissipater is arranged in close contact with the magnetic circuit at the opposite side thereof (?Z side) from the conveyance path.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: April 14, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hideki Matsui, Tatsuya Kunieda, Tomokazu Ogomi, Masaaki Okada, Sadaaki Yoshioka
  • Publication number: 20200101586
    Abstract: An electric power tool includes a motor, an output shaft, a drive force transmission configured to reduce drive speed of the motor and transmit drive force of the motor to the output shaft; a trigger that can be pulled by a user; a rotation speed changing circuitry configured to change a rotation speed of the output shaft that corresponds to a maximum pulled amount of the trigger to a limited rotation speed that is lower than a maximum rotation speed of the output shaft in a non-limited rotation speed mode; and a rotation speed control circuitry configured to control a rotation speed of the motor in correspondence with a pulled amount of the trigger to obtain the rotation speed of the output shaft that is changed by the rotation speed changing circuitry.
    Type: Application
    Filed: December 3, 2019
    Publication date: April 2, 2020
    Inventors: Fumiaki SAWANO, Masaaki OKADA, Hidekazu YUASA
  • Patent number: 10591555
    Abstract: A magnetic sensor device includes: a magnet; a magnetic-resistance-effect-element mounted substrate on which a magnetic-resistance-effect-element mounted body is mounted on a surface thereof opposite to a surface thereof facing the magnet, the magnetic-resistance-effect-element mounted body extending in the longitudinal direction of the magnet; a case that accommodates or retains the magnet and the magnetic-resistance-effect-element mounted substrate; and a magnetic shield that covers the case except for the surface of the magnetic-resistance-effect-element mounted substrate on which is mounted the magnetic-resistance-effect-element mounted body. The magnetic shield covers the case at a position corresponding to the surface of the magnetic-resistance-effect-element mounted substrate facing the magnet, or from the position corresponding to the surface of the magnetic-resistance-effect-element mounted substrate facing the magnet to a side of the case opposite to the magnet.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: March 17, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hideki Matsui, Tomokazu Ogomi, Masaaki Okada, Kenji Shimohata, Sadaaki Yoshioka
  • Publication number: 20200078921
    Abstract: An electric power tool includes a motor, an output shaft, a drive force transmission configured to reduce drive speed of the motor and transmit drive force of the motor to the output shaft; a trigger that can be pulled by a user; a rotation speed changing circuitry configured to change a rotation speed of the output shaft that corresponds to a maximum pulled amount of the trigger to a limited rotation speed that is lower than a maximum rotation speed of the output shaft in a non-limited rotation speed mode; and a rotation speed control circuitry configured to control a rotation speed of the motor in correspondence with a pulled amount of the trigger to obtain the rotation speed of the output shaft that is changed by the rotation speed changing circuitry.
    Type: Application
    Filed: November 15, 2019
    Publication date: March 12, 2020
    Inventors: Fumiaki SAWANO, Masaaki OKADA, Hidekazu YUASA
  • Publication number: 20200028139
    Abstract: Described herein is a multilayer microporous film or membrane that may exhibit improved properties, including improved dielectric break down and strength, compared to prior monolayer or tri-layer microporous membranes of the same thickness. The preferred multilayer microporous membrane comprises microlayers and one or more lamination barriers. Also disclosed is a battery separator or battery comprising one or more of the multilayer microporous films or membranes. The inventive battery and battery separator is preferably safer and more robust than batteries and battery separators using prior monolayer and tri-layer microporous membranes. Also, described herein is a method for making the multilayer microporous separators, membranes or films described herein.
    Type: Application
    Filed: November 10, 2017
    Publication date: January 23, 2020
    Inventors: Kang Karen Xiao, Eric J. Penegar, Takahiko Kondo, Robert Nark, Eric R. White, Xiaomin Zhang, Kristoffer K. Stokes, Stefan Reinartz, Masaaki Okada
  • Publication number: 20190360838
    Abstract: A magnetic sensor device includes a magnet to form a magnetic field in a conveyance path of a detection target, a magnetoresistance effect element to output a change in the magnetic field as a change in a resistance value, a casing to enclose or hold the magnet and the magnetoresistance effect element, a cover to cover the magnetoresistance effect element and form a conveyance path surface that is a surface along the conveyance path, and a signal amplification board having a signal amplification IC disposed on an intersection surface that intersects the conveyance path surface. The signal amplification IC amplifies the change in the resistance value that is output by the magnetoresistance effect element. The change in the resistance value depends on the change in the magnetic field caused due to conveyance of the detection target on the conveyance path surface.
    Type: Application
    Filed: October 24, 2017
    Publication date: November 28, 2019
    Applicant: Mitsubishi Electric Corporation
    Inventors: Hiroaki KAHARA, Masaaki OKADA, Tatsuya KUNIEDA, Tomokazu OGOMI, Hideki MATSUI, Sadaaki YOSHIOKA
  • Publication number: 20190267599
    Abstract: Described herein is a multilayer microporous film or membrane that may exhibit improved properties, including improved dielectric break down and strength, compared to prior monolayer or tri-layer microporous membranes of the same thickness. The preferred multilayer microporous membrane comprises microlayers and one or more lamination barriers. Also disclosed is a battery separator or battery comprising one or more of the multilayer microporous films or membranes. The inventive battery and battery separator is preferably safer and more robust than batteries and battery separators using prior monolayer and tri-layer microporous membranes. Also, described herein is a method for making the multilayer microporous separators, membranes or films described herein.
    Type: Application
    Filed: November 13, 2017
    Publication date: August 29, 2019
    Inventors: Kang Karen Xiao, Eric J. Penegar, Takahiko Kondo, Robert Nark, Eric R. White, Xiaomin Zhang, Kristoffer K. Stokes, Stefan Reinartz, Masaaki Okada
  • Patent number: 10348924
    Abstract: A light receiving unit including: a sensor board assembly on which plural sensor tips are arrayed in a line in a longitudinal direction of the sensor board and mounted on the sensor board; and a sensor plate on which plural of the sensor board assemblies are arrayed and mounted in a line in the longitudinal direction. The sensor chips include plural pixels formed in a line in the longitudinal direction. At longitudinal ends of the sensor board assembly, the sensor chips protrude outward in the longitudinal direction from the longitudinal ends. Between the facing sensor chips of the adjacent sensor board assemblies, the facing sensor chips mounted at the longitudinal ends, the ends of the facing sensor chips are spaced at a predetermined interval. The sensor board includes convex portions, at the longitudinal ends, protruding in the longitudinal direction. The sensor chips are mounted at the convex portion.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: July 9, 2019
    Assignee: Mitsubishi Electric Corporation
    Inventors: Akiko Fujiuchi, Shunsuke Takatori, Masaaki Okada
  • Publication number: 20190086237
    Abstract: A magnetic sensor device includes: a magnetic circuit for forming a magnetic field, a magnetoresistance effect element, and a heat dissipater. The magnetoresistance effect element outputs changes in the magnetic field as changes in a resistance value, and is arranged on a surface (of a +Z side) of the magnetic circuit at a conveyance path side thereof. The heat dissipater is arranged in close contact with the magnetic circuit at the opposite side thereof (?Z side) from the conveyance path.
    Type: Application
    Filed: October 10, 2018
    Publication date: March 21, 2019
    Applicant: Mitsubishi Electric Corporation
    Inventors: Hideki MATSUI, Tatsuya KUNIEDA, Tomokazu OGOMI, Masaaki OKADA, Sadaaki YOSHIOKA
  • Publication number: 20190056461
    Abstract: A magnetic sensor device includes: a magnet; a magnetic-resistance-effect-element mounted substrate on which a magnetic-resistance-effect-element mounted body is mounted on a surface thereof opposite to a surface thereof facing the magnet, the magnetic-resistance-effect-element mounted body extending in the longitudinal direction of the magnet; a case that accommodates or retains the magnet and the magnetic-resistance-effect-element mounted substrate; and a magnetic shield that covers the case except for the surface of the magnetic-resistance-effect-element mounted substrate on which is mounted the magnetic-resistance-effect-element mounted body. The magnetic shield covers the case at a position corresponding to the surface of the magnetic-resistance-effect-element mounted substrate facing the magnet, or from the position corresponding to the surface of the magnetic-resistance-effect-element mounted substrate facing the magnet to a side of the case opposite to the magnet.
    Type: Application
    Filed: March 14, 2017
    Publication date: February 21, 2019
    Applicant: Mitsubishi Electric Corporation
    Inventors: Hideki MATSUI, Tomokazu OGOMI, Masaaki OKADA, Kenji SHIMOHATA, Sadaaki YOSHIOKA
  • Patent number: 10162018
    Abstract: A magnetic sensor device that includes: a bar-shaped magnet; a soft magnetic carrier that is arranged parallel to magnet along the longitudinal direction of magnet, that has a magnetoresistive effect element on a surface thereof opposite to a surface facing magnet, and that extends across the lateral length of magnet; and a guide that has a bottom interposed between magnet and carrier and a side wall standing upright from the bottom along a side of magnet contacting a surface of magnet facing carrier, the bottom and the side wall being formed of a nonmagnetic body contacting magnet and extending in the longitudinal direction of magnet. The magnet is attracted to and held by the carrier, with the guide interposed therebetween, due to the magnetic attractive force between the magnet and the carrier.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: December 25, 2018
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hideki Matsui, Tatsuya Kunieda, Tomokazu Ogomi, Masaaki Okada, Sadaaki Yoshioka
  • Publication number: 20180346709
    Abstract: The present invention provides a thermoplastic resin composition, comprising: a thermoplastic resin consisting of 30 to 90 mass % of a polycarbonate resin and 10 to 70 mass % of a styrene-based resin; an ultraviolet absorber; and an N—R type hindered amine light stabilizer, wherein the content of the ultraviolet absorber is 0.01 to 3 parts by mass, and the content of the N—R type hindered amine light stabilizer is 0.01 to 3 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
    Type: Application
    Filed: December 1, 2016
    Publication date: December 6, 2018
    Inventors: Masaki MURATA, Masaaki OKADA
  • Publication number: 20180313911
    Abstract: A magnetic sensor device including: a board mounted with a magnetoresistive effect element, a magnet to form a bias magnetic field for the magnetoresistive effect element, an enclosure having an opening on a side of a conveyance path where a to-be-detected object is conveyed, also including a housing portion to house the magnet and the board, and a cover to cover a surface on a side of the opening of the housing portion. The enclosure includes step portions on which the board is supported such that the board lies across the opening and extends parallel to the conveyance path, and grooves, continuous with the step portions, extending from the opening to an outer surface of the enclosure on a side of the conveyance direction.
    Type: Application
    Filed: July 3, 2018
    Publication date: November 1, 2018
    Applicant: Mitsubishi Electric Corporation
    Inventors: Masaaki OKADA, Hideki MATSUI, Tomokazu OGOMI, Sadaaki YOSHIOKA
  • Publication number: 20180306873
    Abstract: A magnetic sensor device that includes: a bar-shaped magnet; a soft magnetic carrier that is arranged parallel to magnet along the longitudinal direction of magnet, that has a magnetoresistive effect element on a surface thereof opposite to a surface facing magnet, and that extends across the lateral length of magnet; and a guide that has a bottom interposed between magnet and carrier and a side wall standing upright from the bottom along a side of magnet contacting a surface of magnet facing carrier, the bottom and the side wall being formed of a nonmagnetic body contacting magnet and extending in the longitudinal direction of magnet. The magnet is attracted to and held by the carrier, with the guide interposed therebetween, due to the magnetic attractive force between the magnet and the carrier.
    Type: Application
    Filed: January 26, 2016
    Publication date: October 25, 2018
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Hideki Matsui, Tatsuya Kunieda, Tomokazu Ogomi, Masaaki Okada, Sadaaki Yoshioka
  • Publication number: 20180249035
    Abstract: A light receiving unit including: a sensor board assembly on which plural sensor tips are arrayed in a line in a longitudinal direction of the sensor board and mounted on the sensor board; and a sensor plate on which plural of the sensor board assemblies are arrayed and mounted in a line in the longitudinal direction. The sensor chips include plural pixels formed in a line in the longitudinal direction. At longitudinal ends of the sensor board assembly, the sensor chips protrude outward in the longitudinal direction from the longitudinal ends. Between the facing sensor chips of the adjacent sensor board assemblies, the facing sensor chips mounted at the longitudinal ends, the ends of the facing sensor chips are spaced at a predetermined interval. The sensor board includes convex portions, at the longitudinal ends, protruding in the longitudinal direction. The sensor chips are mounted at the convex portion.
    Type: Application
    Filed: December 15, 2016
    Publication date: August 30, 2018
    Applicant: Mitsubishi Electric Corporation
    Inventors: Akiko FUJIUCHI, Shunsuke TAKATORI, Masaaki OKADA