Patents by Inventor Masahiko Shioda

Masahiko Shioda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10508329
    Abstract: An aluminum alloy material for use in thermal conduction to which improved castability has been imparted by silicon addition. It has improved thermal conductivity and improved strength. The material has a composition containing 7.5-12.5 mass % Si and 0.1-2.0 mass % Cu, the remainder being Al and unavoidable impurities, wherein the amount of copper in the state of a solid solution in the matrix phase is regulated to 0.3 mass % or smaller. The composition may further contain at least 0.3 mass % Fe and/or at least 0.1 mass % Mg, provided that the sum of (Fe content) and (content of Mg among the impurities)×2 is 1.0 mass % or smaller and the sum of (Cu content), (content of Mg among the impurities)×2.5, and (content of Zn among the impurities) is 2.0 mass % or smaller.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: December 17, 2019
    Assignee: Nippon Light Metal Company, Ltd.
    Inventors: Hiroshi Horikawa, Masahiko Shioda
  • Patent number: 9828660
    Abstract: A method for manufacturing an aluminum alloy casting includes obtaining the aluminum alloy casting by casting an aluminum alloy into a mold, performing solution heat treatment, rapidly cooling the casting, performing aging treatment, and cooling the casting. The aluminum alloy includes, in terms of mass ratios, 4.0 to 7.0% of Si, 0.5 to 2.0% of Cu, 0.25 to 0.5% of Mg, no more than 0.5% of Fe, and no more than 0.5% of Mn, and at least one component selected from the group consisting of 0.002 to 0.02% of Na, 0.002 to 0.02% of Ca and 0.002 to 0.02% of Sr, a remainder being Al and inevitable impurities. An internal combustion engine cylinder head is composed of the aluminum alloy casting and manufactured by the method of the casting. The aluminum alloy casting is suitable for applications requiring superior elongation, high cycle fatigue strength and high thermal fatigue strength.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: November 28, 2017
    Assignees: NISSAN MOTOR CO., LTD., NIPPON LIGHT METAL COMPANY, LTD.
    Inventors: Hiroshi Souda, Kouichi Akiyama, Hiroshi Horikawa, Masahiko Shioda
  • Patent number: 9353429
    Abstract: An aluminum alloy material for use in thermal conduction to which improved castability has been imparted by silicon addition. It has improved thermal conductivity and improved strength. The material has a composition containing 7.5-12.5 mass % Si and 0.1-2.0 mass % Cu, the remainder being Al and unavoidable impurities, wherein the amount of copper in the state of a solid solution in the matrix phase is regulated to 0.3 mass % or smaller. The composition may further contain at least 0.3 mass % Fe and/or at least 0.1 mass % Mg, provided that the sum of (Fe content) and (content of Mg among the impurities)×2 is 1.0 mass % or smaller and the sum of (Cu content), (content of Mg among the impurities)×2.5, and (content of Zn among the impurities) is 2.0 mass % or smaller.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: May 31, 2016
    Assignee: NIPPON LIGHT METAL COMPANY, LTD.
    Inventors: Hiroshi Horikawa, Masahiko Shioda
  • Patent number: 8999080
    Abstract: Disclosed are: a casting aluminum alloy that is excellent in elongation as alternative properties of a high cycle fatigue strength and a thermal fatigue strength and is suitably usable for a casting for which both of the excellent high cycle fatigue strength and the excellent thermal fatigue strength are required, for example, an internal combustion engine cylinder head; a casting made of the aluminum alloy; a manufacturing method of the casting; and further, an internal combustion engine cylinder head composed of the aluminum alloy casting and manufactured by the manufacturing method of the casting. The casting aluminum alloy contains, in terms of mass ratios, 4.0 to 7.0% of Si, 0.5 to 2.0% of Cu, 0.25 to 0.5% of Mg, no more than 0.5% of Fe, no more than 0.5% of Mn, and at least one component selected from the group consisting of Na, Ca and Sr, each mass ratio of which is 0.002 to 0.02%.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: April 7, 2015
    Assignees: Nissan Motor Co., Ltd., Nippon Light Metal Company, Ltd.
    Inventors: Hiroshi Souda, Kouichi Akiyama, Hiroshi Horikawa, Masahiko Shioda
  • Patent number: 8936688
    Abstract: An aluminum alloy casting material for heat conducting is provided, wherein the thermal conductivity is improved of an aluminum alloy casting material whereof the castability is improved by the addition of silicon where said invention is characterized by being an aluminum alloy casting material with excellent thermal conductivity, comprising 5-10.0% by mass of silicon, 0.1-0.5% by mass of magnesium and the remainder comprising aluminum and inevitable impurities, and whereon aging treatment has been performed.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: January 20, 2015
    Assignee: Nippon Light Metal Company, Ltd.
    Inventors: Hiroshi Horikawa, Sanji Kitaoka, Masahiko Shioda, Toshihiro Suzuki, Takahiko Watai, Hidetoshi Kawada
  • Publication number: 20140182750
    Abstract: A method for manufacturing an aluminum alloy casting includes obtaining the aluminum alloy casting by casting an aluminum alloy into a mold, performing solution heat treatment, rapidly cooling the casting, performing aging treatment, and cooling the casting. The aluminum alloy includes, in terms of mass ratios, 4.0 to 7.0% of Si, 0.5 to 2.0% of Cu, 0.25 to 0.5% of Mg, no more than 0.5% of Fe, and no more than 0.5% of Mn, and at least one component selected from the group consisting of 0.002 to 0.02% of Na, 0.002 to 0.02% of Ca and 0.002 to 0.02% of Sr, a remainder being Al and inevitable impurities. An internal combustion engine cylinder head is composed of the aluminum alloy casting and manufactured by the method of the casting. The aluminum alloy casting is suitable for applications requiring superior elongation, high cycle fatigue strength and high thermal fatigue strength.
    Type: Application
    Filed: March 7, 2014
    Publication date: July 3, 2014
    Applicants: NIPPON LIGHT METAL COMPANY, LTD., NISSAN MOTOR CO., LTD.
    Inventors: Hiroshi SOUDA, Kouichi AKIYAMA, Hiroshi HORIKAWA, Masahiko SHIODA
  • Publication number: 20140048186
    Abstract: An aluminum alloy material for use in thermal conduction to which improved castability has been imparted by silicon addition. It has improved thermal conductivity and improved strength. The material has a composition containing 7.5-12.5 mass % Si and 0.1-2.0 mass % Cu, the remainder being Al and unavoidable impurities, wherein the amount of copper in the state of a solid solution in the matrix phase is regulated to 0.3 mass % or smaller. The composition may further contain at least 0.3 mass % Fe and/or at least 0.1 mass % Mg, provided that the sum of (Fe content) and (content of Mg among the impurities)×2 is 1.0 mass % or smaller and the sum of (Cu content), (content of Mg among the impurities)×2.5, and (content of Zn among the impurities) is 2.0 mass % or smaller.
    Type: Application
    Filed: October 18, 2013
    Publication date: February 20, 2014
    Inventors: Hiroshi Horikawa, Masahiko Shioda
  • Publication number: 20120168041
    Abstract: An aluminum alloy casting material for heat conducting is provided, wherein the thermal conductivity is improved of an aluminum alloy casting material whereof the castability is improved by the addition of silicon where said invention is characterized by being an aluminum alloy casting material with excellent thermal conductivity, comprising 5-10.0% by mass of silicon, 0.1-0.5% by mass of magnesium and the remainder comprising aluminum and inevitable impurities, and whereon aging treatment has been performed.
    Type: Application
    Filed: January 3, 2012
    Publication date: July 5, 2012
    Applicant: NIPPON LIGHT METAL COMPANY, LTD.
    Inventors: Hiroshi HORIKAWA, Sanji KITAOKA, Masahiko SHIODA, Toshihiro SUZUKI, Takahiko WATAI, Hidetoshi KAWADA
  • Publication number: 20110132504
    Abstract: An aluminum alloy casting material for heat conduction obtained by adding Si to an aluminum alloy casting material with enhanced castability thereby realize enhancement of thermal conductivity. There is provided an aluminum alloy casting material excelling in heat conduction. characterized in that it comprises 5 to 10.0 mass % of Si, 0.1 to 0.5 mass % of Mg and the balance of Al and unavoidable impurities, the aluminum alloy casting material having undergone an aging treatment. Further, there is provided a cast aluminum alloy casting material that while having castability and mechanical strength equivalent to or higher than those of conventional cast aluminum alloys, is also enhanced in heat conduction; and provided a process for producing the cast aluminum alloy. In particular, there are provided a cast aluminum alloy and process for producing the same, wherein Si is contained in an amount of 6.0 to 8.0 mass %, the elements other than Si and Al each in simple form in an amount of ?0.
    Type: Application
    Filed: April 5, 2005
    Publication date: June 9, 2011
    Applicant: NIPPON LIGHT METAL COMPANY, LTD.
    Inventors: Hiroshi Horikawa, Sanji Kitaoka, Masahiko Shioda, Toshihiro Suzuki, Takahiko Watai, Hidetoshi Kawada
  • Publication number: 20100296964
    Abstract: [Objectives] An aluminum alloy for casting with excellent rigidity and having a low coefficient of linear expansion, and at the same time, does not have a high cost, and has a few restrictions at the time of recycling. [Means for Achieving Objectives] An aluminum alloy for casting with excellent rigidity and having a low coefficient of linear expansion containing 13-25% by mass of silicon, 2-8% by mass of copper, 0.5-3% by mass of iron, 0.3-3% by mass of manganese, 0.001-0.02% by mass of phosphorus, and the remainder comprising aluminum and inevitable impurities, wherein the total amount of iron and manganese is 3.0% by mass or greater. Said alloy may further contain 0.5-6% by mass of nickel, and the total amount of iron, manganese, and nickel may be 3.0% by mass or greater. Further, said alloy may further contain one or more of 0.1-1.0% by mass of chromium, 0.05-1.5% by mass of magnesium, 0.01-1.0% by mass of titanium, 0.0001-1.0% by mass of boron, 0.1-1.0% by mass of zirconium, 0.1-1.
    Type: Application
    Filed: August 2, 2010
    Publication date: November 25, 2010
    Applicant: NIPPON LIGHT METAL COMPANY, LTD.
    Inventors: Kazuhiro ODA, Masahiko Shioda
  • Publication number: 20100108209
    Abstract: An aluminum alloy material for use in thermal conduction to which improved castability has been imparted by silicon addition. It has improved thermal conductivity and improved strength. The material has a composition containing 7.5-12.5 mass % Si and 0.1-2.0 mass % Cu, the remainder being Al and unavoidable impurities, wherein the amount of copper in the state of a solid solution in the matrix phase is regulated to 0.3 mass % or smaller. The composition may further contain at least 0.3 mass % Fe and/or at least 0.1 mass % Mg, provided that the sum of (Fe content) and (content of Mg among the impurities)×2 is 1.0 mass % or smaller and the sum of (Cu content), (content of Mg among the impurities)×2.5, and (content of Zn among the impurities) is 2.0 mass % or smaller.
    Type: Application
    Filed: February 27, 2007
    Publication date: May 6, 2010
    Applicant: NIPPON LIGHT METAL COMPANY, LTD.
    Inventors: Hiroshi Horikawa, Masahiko Shioda
  • Patent number: 7695577
    Abstract: The present invention discloses an aluminum alloy being excellent in wear resistance, containing, in mass %, 12.0 to 13.7% of Si, 2.0 to 5.0% of Cu, 0.1 to 1.0% of Mg, 0.8 to 1.3% of Mn, 0.10 to 0.5% of Cr, 0.05 to 0.20% of Ti, 0.5 to 1.3% of Fe, 0.003 to 0.02% of P, and has a Ca content controlled to less than 0.005 mass %, the balance being Al and inevitable impurities; and an aluminum alloy sliding member excellent in wear resistance, which has in mass %, 12.0 to 14.0% of Si, 2.0 to 5.0% of Cu, 0.1 to 1.0% of Mg, 0.8 to 1.3% of Mn, 0.10 to 0.5% of Cr, 0.05 to 0.20% of Ti, 0.5 to 1.3% of Fe, 0.003 to 0.02% of P, and has a Ca content controlled to less than 0.005 mass %, the balance being Al and inevitable impurities, and contains primary crystals of Si having a grain diameter of 20 ?m or more in an amount of 20 pieces/mm2 or less. The alloy may contain one or two of 0.0001 to 0.01 mass % of B, and 0.3 to 3.0 mass % of Ni.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: April 13, 2010
    Assignee: Nippon Light Metal Company, Ltd.
    Inventors: Masahiko Shioda, Sanji Kitaoka, Yukio Kuramasu
  • Publication number: 20090010799
    Abstract: Disclosed are: a casting aluminum alloy that is excellent in elongation as alternative properties of a high cycle fatigue strength and a thermal fatigue strength and is suitably usable for a casting for which both of the excellent high cycle fatigue strength and the excellent thermal fatigue strength are required, for example, an internal combustion engine cylinder head; a casting made of the aluminum alloy; a manufacturing method of the casting; and further, an internal combustion engine cylinder head composed of the aluminum alloy casting and manufactured by the manufacturing method of the casting. The casting aluminum alloy contains, in terms of mass ratios, 4.0 to 7.0% of Si, 0.5 to 2.0% of Cu, 0.25 to 0.5% of Mg, no more than 0.5% of Fe, no more than 0.5% of Mn, and at least one component selected from the group consisting of Na, Ca and Sr, each mass ratio of which is 0.002 to 0.02%.
    Type: Application
    Filed: July 2, 2008
    Publication date: January 8, 2009
    Inventors: Hiroshi SOUDA, Kouichi AKIYAMA, Hiroshi HORIKAWA, Masahiko SHIODA
  • Publication number: 20070193663
    Abstract: An aluminum alloy for casting with excellent rigidity and having a low coefficient of linear expansion containing 13-25% by mass of silicon, 2-8% by mass of copper, 0.5-3% by mass of iron, 0.3-3% by mass of manganese, 0.001-0.02% by mass of phosphorus, and the remainder comprising aluminum and inevitable impurities, wherein the total amount of iron and manganese is 3.0% by mass or greater. Said alloy may further contain 0.5-6% by mass of nickel, and the total amount of iron, manganese, and nickel may be 3.0% by mass or greater. Further, said alloy may further contain one or more of 0.1-1.0% by mass of chromium, 0.05-1.5% by mass of magnesium, 0.01-1.0% by mass of titanium, 0.0001-1.0% by mass of boron, 0.1-1.0% by mass of zirconium, 0.1-1.0% by mass of vanadium, or 0.01-1.0% by mass of molybdenum.
    Type: Application
    Filed: March 23, 2005
    Publication date: August 23, 2007
    Applicant: NIPPON LIGHT METAL COMPANY, LTD.
    Inventors: Kazuhiro Oda, Masahiko Shioda
  • Publication number: 20070068604
    Abstract: The present invention discloses an aluminum alloy being excellent in wear resistance, containing, in mass %, 12.0 to 13.7% of Si, 2.0 to 5.0% of Cu, 0.1 to 1.0% of Mg, 0.8 to 1.3% of Mn, 0.10 to 0.5% of Cr, 0.05 to 0.20% of Ti, 0.5 to 1.3% of Fe, 0.003 to 0.02% of P, and has a Ca content controlled to less than 0.005 mass %, the balance being Al and inevitable impurities; and an aluminum alloy sliding member excellent in wear resistance, which has in mass %, 12.0 to 14.0% of Si, 2.0 to 5.0% of Cu, 0.1 to 1.0% of Mg, 0.8 to 1.3% of Mn, 0.10 to 0.5% of Cr, 0.05 to 0.20% of Ti, 0.5 to 1.3% of Fe, 0.003 to 0.02% of P, and has a Ca content controlled to less than 0.005 mass %, the balance being Al and inevitable impurities, and contains primary crystals of Si having a grain diameter of 20 ?m or more in an amount of 20 pieces/mm2 or less. The alloy may contain one or two of 0.0001 to 0.01 mass % of B, and 0.3 to 3.0 mass % of Ni.
    Type: Application
    Filed: September 22, 2006
    Publication date: March 29, 2007
    Applicant: NIPPON LIGHT METAL COMPANY, LTD.
    Inventors: Masahiko Shioda, Sanji Kitaoka, Yukio Kuramasu
  • Patent number: 7086362
    Abstract: Disclosed is a shim or a valve lifter for an automotive engine valve driving system that slides against a cam lobe of a camshaft to drive an intake/exhaust valve of an internal combustion engine. The shim or lifter has the top of a sliding surface thereof opposing the cam lobe and being coated with a hard carbon film. The hard carbon film has a surface hardness of 1500 to 4500 kg/mm2 in terms of Knoop hardness, a thickness of 0.3 to 2.0 ?m and a surface roughness Ry (?m) satisfying the following equation (A): Ry<{(0.75?Hk/8000)×h+0.07/0.8}??(A) where h is the thickness (?m) of the hard carbon film; and Hk is the knoop hardness (kg/mm2) of the hard carbon film. By imparting durability, reliability and a low friction coefficient to the hard carbon film that is said to be low in ductility to prevent the hard carbon film from becoming cracked and separated when applied to the sliding portion.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: August 8, 2006
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yutaka Mabuchi, Yoshiteru Yasuda, Masahiko Shioda, Mototaka Ishihara, Hisanori Ohara, Kazuhiko Oda, Yoshiharu Utsumi, Miki Irie
  • Publication number: 20040154570
    Abstract: Disclosed is a shim or a valve lifter for an automotive engine valve driving system that slides against a cam lobe of a camshaft to drive an intake/exhaust valve of an internal combustion engine. The shim or lifter has the top of a sliding surface thereof opposing the cam lobe and being coated with a hard carbon film. The hard carbon film has a surface hardness of 1500 to 4500 kg/mm2 in terms of Knoop hardness, a thickness of 0.3 to 2.
    Type: Application
    Filed: August 22, 2003
    Publication date: August 12, 2004
    Inventors: Yutaka Mabuchi, Yoshiteru Yasuda, Masahiko Shioda, Mototaka Ishihara, Hisanori Ohara, Kazuhiko Oda, Yoshiharu Utsumi, Miki Irie
  • Publication number: 20030143101
    Abstract: An aluminum alloy for die casting, contains, in terms of mass percentage: Si in the range of 1.0˜3.5 %; Mg in the range of 2.5˜4.5 %; Mn in the range of 0.3˜1.5%; Fe in the range equal to or less than 0.15%; Ti in the range of equal to or less than 0.20%; and the balance of aluminum and inevitable impurities. A die cast product having good strength and elongation in a high strain rate region is produced from the aluminum alloy without the need for solution heat treatment.
    Type: Application
    Filed: March 17, 2003
    Publication date: July 31, 2003
    Applicant: NISSAN MOTOR CO., LTD
    Inventors: Sanji Kitaoka, Yukio Kuramasu, Syuichi Asakuno, Kenji Tsushima, Masahiko Shioda, Hiroshi Kambe, Shinichiro Sumi, Takaaki Ikari
  • Publication number: 20030136477
    Abstract: An aluminum alloy for a die casting, used as the material of parts of an automotive vehicle. The aluminum alloy consists essentially of Si in an amount ranging from 10 to 12% by weight, Mg in an amount ranging from 0.15 to 0.50% by weight, Mn in an amount ranging from 0.5 to 1.0% by weight, Fe in an amount of not more than 0.15% by weight, Ti in an amount of not more than 0.1% by weight, Sb in an amount ranging from 0.05 to 0.20% by weight, B in an amount ranging from 0.005 to 0.02%, and balance consisting of aluminum and inevitable impurities.
    Type: Application
    Filed: January 6, 2003
    Publication date: July 24, 2003
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Sanji Kitaoka, Yukio Kuramasu, Shinichiro Sumi, Kenji Tsushima, Hiroshi Kambe, Masahiko Shioda
  • Publication number: 20020088512
    Abstract: An aluminum alloy for die casting, contains, in terms of mass percentage: Si in the range of 1.0˜3.5%; Mg in the range of 2.5˜4.5%; Mn in the range of 0.3˜1.5%; Fe in the range equal to or less than 0.15%; Ti in the range of equal to or less than 0.20%; and the balance of aluminum and inevitable impurities. A die cast product having good strength and elongation in a high strain rate region is produced from the aluminum alloy without the need for solution heat treatment.
    Type: Application
    Filed: October 22, 2001
    Publication date: July 11, 2002
    Applicant: Nissan Motor Company, Ltd
    Inventors: Sanji Kitaoka, Yukio Kuramasu, Syuichi Asakuno, Kenji Tsushima, Masahiko Shioda, Hiroshi Kambe, Shinichiro Sumi, Takaaki Ikari