Patents by Inventor Masahiro Okahara

Masahiro Okahara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7666348
    Abstract: A production method includes: preparing a metal powder composed of one of Mo and W, and a binder composed of a thermoplastic resin and a wax; mixing the metal powder and 40 to 60 volume % of the binder with respect to the metal powder into a mixed powder; and heating and kneading the mixed powder into a raw material. The production method further includes: supplying a predetermined of the raw material in a hole of a die; and compacting the raw material into a cup-shaped green compact by pressing the raw material by a punch, the cup-shaped green compact having a cylindrical portion, a bottom formed at one end portion thereof, and an opening formed at another end portion thereof. The production method further includes: ejecting the cup-shaped green compact from the hole of the die; removing the binder from the ejected cup-shaped green compact by heating; and sintering the cup-shaped green compact by heating the green compact and diffusion-bonding particles of the green compact.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: February 23, 2010
    Assignee: Hitachi Powdered Metals Co., Ltd.
    Inventors: Zenzo Ishijima, Masahiro Okahara, Narutoshi Murasugi
  • Publication number: 20090291012
    Abstract: A production method for a sintered part comprises preparing a metal powder and a binder composed of a thermoplastic resin and a wax, mixing the metal powder and 40 to 60 vol. % of the binder with respect to the metal powder into a mixed powder, and heating and kneading the mixed powder into a raw material. This production method further includes supplying a predetermined amount of the raw material in a hole of a die and compacting the raw material into a green compact having a predetermined shape by pressing the raw material by a punch. This production method further includes ejecting the green compact from the hole of the die, removing the binder from the ejected green compact by heating, and sintering the green compact by heating so as to diffusion bond particles of the green compact. The compacting is performed by pressing at a moving rate U of the punch, which is not more than a rate calculated from the following equation (1).
    Type: Application
    Filed: February 10, 2009
    Publication date: November 26, 2009
    Applicants: HITACHI POWDERED METALS CO., LTD., HITACHI INDUSTRIAL EQUIPMENT SYSTEMS CO., LTD.
    Inventors: Masahiro Okahara, Zenzo Ishijima, Mitsuo Kusano, Kazuya Suzuki, Toru Hirano
  • Patent number: 7399532
    Abstract: A corrosive resistant metal material covered with a conductive substance suitable for use in a component material requiring conductivity and corrosion resistance like electrical conductive material, electrical contact, electromagnetic wave shield, electrochemical electrode or antistatic material, specifically for component material requiring conductivity in sever condition of corrosive environment is provided. A corrosive resistant metal material covered with a conductive substance is formed by cladding a corrosive resistant metal selected from the group consisting of titanium, zirconium, tantalum, niobium and alloy thereof on a conductive metal selected from the group consisting of iron, aluminum, copper, titanium, magnesium, zirconium, tantalum, niobium, tungsten, nickel, chrome and alloy thereof, and covering a conductive surface finishing layer over surface of a corrosive resistant metal layer with a mixture of conductive substance and resinous binder.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: July 15, 2008
    Assignees: Hitachi Cable, Ltd., Hitachi Powdered Metals Co., Ltd.
    Inventors: Masahiro Seido, Tatsuya Tonogi, Kazuhiko Nakagawa, Minoru Shirahige, Masahiro Okahara
  • Publication number: 20060257279
    Abstract: A production method includes: preparing a metal powder composed of one of Mo and W, and a binder composed of a thermoplastic resin and a wax; mixing the metal powder and 40 to 60 volume % of the binder with respect to the metal powder into a mixed powder; and heating and kneading the mixed powder into a raw material. The production method further includes: supplying a predetermined of the raw material in a hole of a die; and compacting the raw material into a cup-shaped green compact by pressing the raw material by a punch, the cup-shaped green compact having a cylindrical portion, a bottom formed at one end portion thereof, and an opening formed at another end portion thereof. The production method further includes: ejecting the cup-shaped green compact from the hole of the die; removing the binder from the ejected cup-shaped green compact by heating; and sintering the cup-shaped green compact by heating the green compact and diffusion-bonding particles of the green compact.
    Type: Application
    Filed: May 8, 2006
    Publication date: November 16, 2006
    Applicant: Hitachi Powdered Metals Co., Ltd.
    Inventors: Zenzo Ishijima, Masahiro Okahara, Narutoshi Murasugi
  • Publication number: 20040211943
    Abstract: In a coating for separators for fuel cells which is coated on a surface of carbon separators or metallic separators for fuel cells wherein graphite is used as a conductive material, copolymer of vinylidene fluoride (VDF) and hexafluoropropyrene (HFP) (VDF-HFP copolymer) are contained at not less than 10% by weight as a binder of the coating, an organic solvent having compatibility with the binder is used as a medium, a content ratio of the conductive material and the binder is in a range from 15:85 to 90:10 by weight, and a content of the organic solvent is in a range from 50 to 95% by weight.
    Type: Application
    Filed: January 6, 2004
    Publication date: October 28, 2004
    Inventors: Masahiro Okahara, Minoru Shirahige
  • Publication number: 20030235711
    Abstract: A corrosive resistant metal material covered with a conductive substance suitable for use in a component material requiring conductivity and corrosion resistance like electrical conductive material, electrical contact, electromagnetic wave shield, electrochemical electrode or antistatic material, specifically for component material requiring conductivity in sever condition of corrosive environment is provided. A corrosive resistant metal material covered with a conductive substance is formed by cladding a corrosive resistant metal selected from the group consisting of titanium, zirconium, tantalum, niobium and alloy thereof on a conductive metal selected from the group consisting of iron, aluminum, copper, titanium, magnesium, zirconium, tantalum, niobium, tungsten, nickel, chrome and alloy thereof, and covering a conductive surface finishing layer over surface of a corrosive resistant metal layer with a mixture of conductive substance and resinous binder.
    Type: Application
    Filed: March 14, 2003
    Publication date: December 25, 2003
    Applicants: HITACHI CABLE, LTD., HITACHI POWDERED METALS CO., LTD.
    Inventors: Masahiro Seido, Tatsuya Tonogi, Kazuhiko Nakagawa, Minoru Shirahige, Masahiro Okahara