Patents by Inventor Masakatsu Matsubara

Masakatsu Matsubara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120194026
    Abstract: A permanent magnet type rotating electrical machine includes a rotor having a rotor core. Magnet holes circumferentially arranged at regular intervals in the rotor core include pairs of first magnet holes and pairs of second magnet holes. Each pair of first magnet holes are symmetric with respect to an imaginary line extending through a rotor core center. Each pair of second magnet holes are located on a radially inner side of the rotor core and are symmetric with respect to the imaginary line. Each pair of second magnet holes are located on an inner circumferential side of the paired first magnet holes with respect to a radial direction of the rotor core. A first magnet angle made by permanent magnets located in each pair of first magnet holes is larger than a second magnet angle made by permanent magnets located in each pair of second magnet holes.
    Type: Application
    Filed: January 27, 2012
    Publication date: August 2, 2012
    Inventors: Yusuke Matsuoka, Masakatsu Matsubara, Wataru Ito
  • Patent number: 8080908
    Abstract: A rotor for an electric rotating machine includes d-axis through holes located on respective d-axes, hollow shafts formed in both axial sides of a rotating shaft not inserted into a rotor core, presser plates mounted on both axial ends of the rotor core, cooling grooves formed in faces of the presser plates in contact with the rotor core, a plurality of presser plate refrigerant outlet holes in the presser plates, the presser plate refrigerant outlet holes of one of the presser plates having diameters different from diameters of the presser plate refrigerant outlet holes of one of the other presser plates, and a refrigerant channel formed so that a refrigerant supplied into one of the hollow shafts of the rotating shaft flows through the refrigerant channel and further through the hollow shaft wall hole of said one hollow shaft and the radial grooves of the respective presser plates.
    Type: Grant
    Filed: November 7, 2006
    Date of Patent: December 20, 2011
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Industrial Products Manufacturing Corporation
    Inventors: Masakatsu Matsubara, Yasuo Hirano, Takashi Hanai, Motoyasu Mochizuki
  • Publication number: 20100301697
    Abstract: A rotor for a rotating electrical machine suppresses demagnetization of permanent magnets without deteriorating motor characteristics, is low-cost, and is highly reliable. The rotor has a plurality of rotor cores (2) that are stacked together, a plurality of permanent magnets (6a, 6b) axially divided by the rotor cores (2) and circumferentially arranged on each of the rotor cores (2), to circumferentially form magnetic irregularities, and a rotor blank (14a) made of nonmagnetic material arranged between those of the rotor cores (2) that are adjacent to each other.
    Type: Application
    Filed: November 25, 2008
    Publication date: December 2, 2010
    Applicants: Kabushiki Kaisha Toshiba, Toshiba Industrial Products Manufacturing Corp.
    Inventors: Norio Takahashi, Mikio Takabatake, Masanori Arata, Kazuto Sakai, Yutaka Hashiba, Wataru Ito, Tadashi Tokumasu, Masakatsu Matsubara
  • Patent number: 7804216
    Abstract: For an electrical reluctance rotary machine, a stator has a winding as an armature, and a rotor has permanent magnet implanting slots provided in a rotor core at lateral sides magnetic poles configured to produce reluctance torque along directions of magnetic flux passing through the magnetic poles to produce reluctance torque, and permanent magnets inserted in the permanent magnet implanting slots so as to cancel magnetic flux of the armature intersecting that magnetic flux, to control a magnetic field leaking at ends of the magnetic poles, having circumferential magnetic unevenness. The electrical reluctance rotary machine is configured to meet a relationship, such that 1.6 ? P × W pm R ? 1.9 where Wpm [mm] is a width of permanent magnet, R [mm] is a radius of the rotor, and P is the number of poles.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: September 28, 2010
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Industrial Products Manufacturing Corporation
    Inventors: Norio Takahashi, Kazuto Sakai, Masanori Arata, Yutaka Hashiba, Wataru Ito, Motoyasu Mochizuki, Mikio Takabatake, Masakatsu Matsubara, Takashi Hanai
  • Patent number: 7705503
    Abstract: Included are a ring-shaped stator and a ring-shaped rotor arranged inside the stator; the stator includes a stator core with armature windings; the rotor includes a rotor core in which a plurality of permanent magnets are inserted and cooling holes are formed, a coolant flowing in each of the cooling holes; and each of the cooling holes is formed so as to have a sectional view which is a convex toward the outer periphery thereof.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: April 27, 2010
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Industrial Products Manufacturing Corporation
    Inventors: Norio Takahashi, Kazuto Sakai, Yoshio Hashidate, Masanori Arata, Wataru Ito, Masakatsu Matsubara, Takashi Hanai, Yasuo Hirano
  • Publication number: 20090261667
    Abstract: A rotor for an electric rotating machine, improving cooling performance of the rotating machine. D-axis through-holes (26) are provided outside the outer periphery of a rotor core (11), and hollow shafts (15a, 15b) are formed in those portions of a rotating shaft (15) which are not inserted in the rotor core (11). Pressing plates (14a, 14b) for holding the rotor core (11) between them are arranged on axially opposite sides of the rotor core (11). Hollow-shaft wall-holes (25) running through the radial direction are formed in the hollow shafts (15a, 15b) on both sides of the rotating shaft (15). In the surface of each pressing plate (14a, 14b) which surface is in contact with the rotator core (11), there are formed a first annular groove (30) connected to the d-axis through-holes (26) and radial grooves (31) for connecting the first annular groove (30) and the hollow-shaft wall-holes (25) of the rotating shaft (15).
    Type: Application
    Filed: November 7, 2006
    Publication date: October 22, 2009
    Inventors: Masakatsu Matsubara, Yasuo Hirano, Takashi Hanai, Motoyasu Mochizuki
  • Publication number: 20090261679
    Abstract: An object of the present invention is to provide an internal permanent magnet type rotating electrical machine capable of maintaining compactness and high output and reducing vibration and noise caused by electromagnetic force. The rotating electrical machine of the present invention has an annular stator and a rotor that is arranged inside the stator with an air gap interposed between the stator and the rotor. The stator has a stator iron core provided with a plurality of slots at circumferential intervals and a coil received in each of the slots.
    Type: Application
    Filed: August 31, 2006
    Publication date: October 22, 2009
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA INDUSTRIAL PRODUCTS MANUFACTURING CORPORATION
    Inventors: Kazuto Sakai, Norio Takahashi, Masanori Arata, Motoyasu Mochizuki, Masakatsu Matsubara, Yasuo Hirano, Takashi Hanai
  • Publication number: 20080093944
    Abstract: For an electrical reluctance rotary machine, a stator has a winding as an armature, and a rotor has permanent magnet implanting slots provided in a rotor core at lateral sides magnetic poles configured to produce reluctance torque along directions of magnetic flux passing through the magnetic poles to produce reluctance torque, and permanent magnets inserted in the permanent magnet implanting slots so as to cancel magnetic flux of the armature intersecting that magnetic flux, to control a magnetic field leaking at ends of the magnetic poles, having circumferential magnetic concavo-convex. The electrical reluctance rotary machine is configured to meet a relationship, such that 1.6 ? P × W pm R ? 1.9 where Wpm [mm] is a width of permanent magnet, R [mm] is an outer-diametrical radius of the rotor, and P is the number of poles.
    Type: Application
    Filed: October 19, 2007
    Publication date: April 24, 2008
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA INDUSTRIAL PRODUCTS MANUFACTURING CORP.
    Inventors: Norio TAKAHASHI, Kazuto Sakai, Masanori Arata, Yutaka Hashiba, Wataru Ito, Motoyasu Mochizuki, Mikio Takabatake, Masakatsu Matsubara, Takashi Hanai
  • Patent number: 7327057
    Abstract: A neutral-point terminal device for use with a neutral point side bundle of wires in a polyphase winding of a dynamoelectric machine includes a metal sleeve and an insulating cap covering the metal sleeve. The metal sleeve is covered by the insulating cap so that distal ends of the bundled neutral point side wires remain in an interior of the metal sleeve. The metal sleeve is then pressurized thereby to be deformed so as to be secured to the distal ends of the bundled wires.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: February 5, 2008
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Industrial Products Manufacturing Corporation
    Inventors: Wataru Ito, Motoyasu Mochizuki, Yasuo Hirano, Akihito Kondo, Yoichi Seo, Takashi Hanai, Nobutaka Aikura, Takashi Araki, Masakatsu Matsubara, Toshio Innan
  • Publication number: 20070052313
    Abstract: Included are a ring-shaped stator and a ring-shaped rotor arranged inside the stator; the stator includes a stator core with armature windings; the rotor includes a rotor core in which a plurality of permanent magnets are inserted and cooling holes are formed, a coolant flowing in each of the cooling holes; and each of the cooling holes is formed so as to have a sectional view which is a convex toward the outer periphery thereof.
    Type: Application
    Filed: July 27, 2006
    Publication date: March 8, 2007
    Inventors: Norio Takahashi, Kazuto Sakai, Yoshio Hashidate, Masanori Arata, Wataru Ito, Masakatsu Matsubara, Takashi Hanai, Yasuo Hirano
  • Patent number: 7170209
    Abstract: A rotor for a reluctance type rotating machine includes a rotor core formed by stacking a number of annular core materials each of which includes magnetic concave and convex portions. The rotor core has two keys which are formed at two positions on an inner circumference of the rotor core. The positions are spaced 180 degrees apart from each other with respect to the rotor core. The rotor core is divided into a plurality of blocks and the core materials constituting at least one block have the magnetic concave and convex portions shifted by a predetermined angle relative to the core materials constituting the other or another block on the basis of a center line passing through the keys. A whole or part of the core materials of at least one block are located circumferentially 180 degrees apart form the core materials constituting the other or another block.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: January 30, 2007
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Industrial Products Manufacturing Corporation
    Inventors: Takashi Araki, Masakatsu Matsubara, Motoyasu Mochizuki, Yukihiko Kazao, Masanori Arata, Yasuo Hirano, Nobutake Aikura, Akito Kondou, Masahiko Yamashiki, Masanori Ohashi, Takashi Hanai
  • Patent number: 7057322
    Abstract: A rotor for a reluctance type rotating machine includes a rotor core formed by stacking a number of annular core materials each of which includes magnetic concave and convex portions alternately formed on an outer circumference thereof and a central through hole, the rotor core having a key axially extending on an outer circumference, the rotor core being divided into a plurality of blocks, the core materials constituting one of at least three blocks having the magnetic concave and convex portions shifted by a predetermined angle in one of a rotating direction of the rotor and a direction opposite the rotating direction of the rotor relative to a center line passing the key, the core materials constituting each one of the blocks located at both ends of the one block having the magnetic concave and convex portions shifted by a predetermined angle in the other of the rotating direction of the rotor and the direction opposite the rotating direction of the rotor relative to a center line passing the key, and a ro
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: June 6, 2006
    Assignees: Kabushiki Kaisha Toshiba, Aishin AW Co., Ltd., Toshiba Industrial Products Manufacturing Corporation
    Inventors: Takashi Araki, Masakatsu Matsubara, Motoyasu Mochizuki, Yukihiko Kazao, Masanori Arata, Yasuo Hirano, Nobutake Aikura, Akito Kondo, Masahiko Yamashiki, Masanori Ohashi, Takashi Hanai, Ken Takeda, Hiroshi Morohashi
  • Publication number: 20060049704
    Abstract: A neutral-point terminal device for use with a neutral point side bundle of wires in a polyphase winding of a dynamoelectric machine includes a metal sleeve and an insulating cap covering the metal sleeve. The metal sleeve is covered by the insulating cap so that distal ends of the bundled neutral point side wires remain in an interior of the metal sleeve. The metal sleeve is then pressurized thereby to be deformed so as to be secured to the distal ends of the bundled wires.
    Type: Application
    Filed: September 23, 2005
    Publication date: March 9, 2006
    Inventors: Wataru Ito, Motoyasu Mochizuki, Yasuo Hirano, Akihito Kondo, Yoichi Seo, Takashi Hanai, Nobutaka Aikura, Takashi Araki, Masakatsu Matsubara, Toshio Innan
  • Publication number: 20050104468
    Abstract: A rotor for a reluctance type rotating machine includes a rotor core formed by stacking a number of annular core materials each of which includes magnetic concave and convex portions alternately formed on an outer circumference thereof and a central through hole, the rotor core having a key axially extending on an outer circumference, the rotor core being divided into a plurality of blocks, the core materials constituting one of at least three blocks having the magnetic concave and convex portions shifted by a predetermined angle in one of a rotating direction of the rotor and a direction opposite the rotating direction of the rotor relative to a center line passing the key, the core materials constituting each one of the blocks located at both ends of the one block having the magnetic concave and convex portions shifted by a predetermined angle in the other of the rotating direction of the rotor and the direction opposite the rotating direction of the rotor relative to a center line passing the key, and a ro
    Type: Application
    Filed: July 23, 2004
    Publication date: May 19, 2005
    Applicants: KABUSHIKI KAISHA TOSHIBA, AISIN AW CO., LTD., TOSHIBA INDUSTRIAL PRODUCTS MANUFACTURING CORP.
    Inventors: Takashi Araki, Masakatsu Matsubara, Motoyasu Mochizuki, Yukihiko Kazao, Masanori Arata, Yasuo Hirano, Nobutake Aikura, Akito Kondou, Masahiko Yamashiki, Masanori Ohashi, Takashi Hanai, Ken Takeda, Hiroshi Morohashi
  • Publication number: 20050023922
    Abstract: A rotor for a reluctance type rotating machine includes a rotor core formed by stacking a number of annular core materials each of which includes magnetic concave and convex portions alternately formed on an outer circumference thereof and a central through hole, the rotor core having a key axially extending on an outer circumference thereof, the rotor core being divided into a plurality of blocks, the core materials constituting at least one block having the magnetic concave and convex portions shifted by a predetermined angle relative to the core materials constituting the other or another block on the basis of a center line passing the key, and a rotational shaft inserted through the central hole of the rotor core, the shaft having a key groove engaging the key of the rotor core.
    Type: Application
    Filed: April 28, 2004
    Publication date: February 3, 2005
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA INDUSTRIAL PRODUCTS MANUFACTURING CORP.
    Inventors: Takashi Araki, Masakatsu Matsubara, Motoyasu Mochizuki, Yukihiko Kazao, Masanori Arata, Yasuo Hirano, Nobutake Aikura, Akito Kondou, Masahiko Yamashiki, Masanori Ohashi, Takashi Hanai
  • Patent number: 6794784
    Abstract: Permanent magnets are arranged to be supported by the provision of permanent magnet position-locating projections (12) in permanent magnet embedding holes (5). By optimizing the shape of thin-wall regions (18) and (19) within rotor core (4), leakage of flux generated from the permanent magnets is reduced and the strength of the thin-wall regions where stress is concentrated is ensured.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: September 21, 2004
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Industrial Products Manufacturing Corporation
    Inventors: Norio Takahashi, Yutaka Hashiba, Kazuto Sakai, Masanori Arata, Yukihiko Kazao, Takashi Araki, Masakatsu Matsubara, Yasuo Hirano
  • Publication number: 20020047435
    Abstract: Permanent magnets are arranged to be supported by the provision of permanent magnet position-locating projections (12) in permanent magnet embedding holes (5). By optimizing the shape of thin-wall regions (18) and (19) within rotor core (4), leakage of flux generated from the permanent magnets is reduced and the strength of the thin-wall regions where stress is concentrated is ensured.
    Type: Application
    Filed: May 24, 2001
    Publication date: April 25, 2002
    Inventors: Norio Takahashi, Yutaka Hashiba, Kazuto Sakai, Masanori Arata, Yukihiko Kazao, Takashi Araki, Masakatsu Matsubara, Yasuo Hirano