Patents by Inventor Masakazu Edo

Masakazu Edo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11759893
    Abstract: An aluminum alloy for flux-free brazing provided for brazing performed via an Al—Si-based brazing material without a flux in a non-oxidizing atmosphere without depressurization, includes: by mass %, 0.01% to 2.0% of Mg; and 0.005% to 1.5% of Bi, wherein in the aluminum alloy, there are more than 10 Mg—Bi-based compounds having a diameter of 0.01 ?m or more and less than 5.0 ?m in terms of equivalent circle diameter per 10,000-?m2 visual field and there are less than 2 Mg—Bi-based compounds having a diameter of 5.0 ?m or more per 10,000-?m2 visual field in a cross section parallel to a rolling direction, and in the aluminum alloy, there are less than 5 Bi particles having a diameter of 5.0 ?m or more in terms of equivalent circle diameter per 10,000-?m2 visual field in the cross section parallel to the rolling direction.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: September 19, 2023
    Assignee: MA Aluminum Corporation
    Inventors: Yoshiki Mori, Hideyuki Miyake, Michihide Yoshino, Shohei Iwao, Masakazu Edo
  • Publication number: 20230193431
    Abstract: The aluminum alloy clad material includes a core material and sacrificial materials disposed on both surfaces of the core material, the composition of the core material contains, by mass %, Mn: 0.7% to 1.8%, Si: 0.3% to 1.3%, Fe: 0.05% to 0.7% and Zn: 0.5% to 3.0% with a remainder consisting of Al and inevitable impurities, the composition of the sacrificial material contains, by mass %, Mn: 0.005% to 0.7%, Fe: 0.05% to 0.3% and Zn: 1.0% to 4.0% with a remainder consisting of Al and inevitable impurities, an amount of Zn in the sacrificial material is larger than an amount of Zn in the core material by 0.2% or more, and the potential of the core material after a brazing heat treatment is within a range of ?700 to ?870 mV.
    Type: Application
    Filed: June 21, 2021
    Publication date: June 22, 2023
    Applicants: MA Aluminum Corporation, DENSO CORPORATION
    Inventors: Yoshiki MORI, Michihide YOSHINO, Masakazu EDO, Shohei IWAO, Hideyuki MIYAKE, Yousuke UCHIDA, Nobuhiro HONMA, Shogo YAMADA
  • Publication number: 20220072665
    Abstract: An aluminum brazing sheet has a multilayer structure of two or more layers of at least a core material and a brazing material, wherein an Al—Si—Mg—Bi-based brazing material containing, by mass %, 0.01% to 2.0% of Mg, 1.5% to 14.0% of Si, and 0.005% to 1.5% of Bi is clad on one surface or both surfaces of the core material to be located at an outermost surface of the aluminum brazing sheet, in the Al—Si—Mg—Bi based brazing material, there are more than 10 Mg—Bi-based compounds having a diameter of 0.01 ?m or more and less than 5.0 ?m when observed in a surface layer plane direction and there are less than 2 Mg—Bi-based compounds having a diameter of 5.0 ?m or more, and in the brazing material, there are less than 5 Bi particles having a diameter of 5.0 ?m or more when observed in the surface layer plane direction.
    Type: Application
    Filed: September 25, 2019
    Publication date: March 10, 2022
    Applicant: Mitsubishi Aluminum Co., Ltd.
    Inventors: Yoshiki MORI, Hideyuki MIYAKE, Michihide YOSHINO, Shohei IWAO, Masakazu EDO
  • Publication number: 20220063024
    Abstract: An aluminum alloy for flux-free brazing provided for brazing performed via an Al-Si-based brazing material without a flux in a non-oxidizing atmosphere without depressurization, includes: by mass %, 0.01% to 2.0% of Mg; and 0.005% to 1.5% of Bi, wherein in the aluminum alloy, there are more than 10 Mg-Bi-based compounds having a diameter of 0.01 ?m or more and less than 5.0 ?m in terms of equivalent circle diameter per 10,000-?m2 visual field and there are less than 2 Mg-Bi-based compounds having a diameter of 5.0 ?m or more per 10,000-?m2 visual field in a cross section parallel to a rolling direction, and in the aluminum alloy, there are less than 5 Bi particles having a diameter of 5.0 ?m or more in terms of equivalent circle diameter per 10,000-?m2 visual field in the cross section parallel to the rolling direction.
    Type: Application
    Filed: September 25, 2019
    Publication date: March 3, 2022
    Applicant: Mitsubishi Aluminum Co., Ltd.
    Inventors: Yoshiki MORI, Hideyuki MIYAKE, Michihide YOSHINO, Shohei IWAO, Masakazu EDO
  • Patent number: 11045911
    Abstract: A sacrificial material on one surface of a core material, a Al brazing material containing Si: 6.0% to 14.0%, Mg: 0.05% to 1.5%, Bi: 0.05% to 0.25%, Sr: 0.0001% to 0.1%, and Al balance and satisfying (Bi+Mg)×Sr?0.1 is disposed on the other surface, Mg—Bi-based compounds of the brazing material with a diameter of 0.1-5.0 ?m are more than 20 per 10,000-?m2 and the Mg—Bi-based compounds with a diameter of 5.0 ?m or more are less than 2 before brazing, the core material contains Mn: 1.0% to 1.7%, Si: 0.2% to 1.0%, Fe: 0.1% to 0.5%, Cu: 0.08% to 1.0%, Mg: 0.1% to 0.7%, and Al balance, the sacrificial material contains Zn: 0.5% to 6.0% and Mg of which a content is limited to 0.1% or less, and a Mg concentration on a surface of the sacrificial material after brazing is 0.15% or less.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: June 29, 2021
    Assignees: Mitsubishi Aluminum Co., Ltd., DENSO CORPORATION
    Inventors: Yoshiki Mori, Hideyuki Miyake, Michihide Yoshino, Shohei Iwao, Masakazu Edo, Naoki Sugimoto, Nobuhiro Honma, Shogo Yamada, Hayaki Teramoto, Taketoshi Toyama
  • Patent number: 11027373
    Abstract: An aluminum alloy clad material includes: a sacrificial material on one surface of a core material; and an Al—Si—Mg—Bi-based brazing material disposed on other surface of the core material, contains, by mass %, Si: 6.0% to 14.0%, Mg: 0.05% to 1.5%, Bi: 0.05% to 0.25%, Sr: 0.0001% to 0.1%, and a balance consisting of Al and inevitable impurities, and satisfies a relationship of (Bi+Mg)×Sr?0.1 by mass %, in which Mg—Bi-based compounds contained in the Al—Si—Mg—Bi-based brazing material with a diameter of 0.1 ?m or more and less than 5.0 ?m are more than 20 in number per 10,000-?m2 and the Mg—Bi-based compounds with a diameter of 5.0 ?m or more are less than 2 in number, and the core material contains Mn: 0.9% to 1.7%, Si: 0.2% to 1.0%, Fe: 0.1% to 0.5%, Cu: 0.08% to 1.0%, and a balance consisting of Al and inevitable impurities.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: June 8, 2021
    Assignees: Mitsubishi Aluminum Co., Ltd., DENSO CORPORATION
    Inventors: Yoshiki Mori, Hideyuki Miyake, Michihide Yoshino, Shohei Iwao, Masakazu Edo, Naoki Sugimoto, Nobuhiro Honma, Shogo Yamada, Hayaki Teramoto, Taketoshi Toyama
  • Patent number: 11020824
    Abstract: An Al—Si—Mg—Bi-based brazing material containing Si: 6.0% to 14.0%, Fe: 0.05% to 0.3%, Mg: 0.02% to 1.5%, Bi: 0.05% to 0.25%, Sr: 0.0001% to 0.1%, and a balance of Al and inevitable impurities, and satisfies (Bi+Mg)×Sr?0.1, is disposed on both surfaces of a core material, Mg—Bi-based compounds of the brazing material with a diameter of 0.1 ?m or more and less than 5.0 ?m in terms of equivalent circle diameter are more than 20 in number in 10,000 ?m2 and the Mg—Bi-based compounds with diameter of 5.0 ?m or more are less than 2 in number in 10,000 ?m2, the core material contains Mn: 0.8% to 1.8%, Si: 0.01% to 1.0%, Fe: 0.1% to 0.5%, and a balance of Al and inevitable impurities, and a cathode current density of a brazing material layer after a brazing heat treatment is 0.1 mA/cm2 or less.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: June 1, 2021
    Assignees: Mitsubishi Aluminum Co., Ltd., DENSO CORPORATION
    Inventors: Yoshiki Mori, Hideyuki Miyake, Michihide Yoshino, Shohei Iwao, Masakazu Edo, Naoki Sugimoto, Nobuhiro Honma, Shogo Yamada, Hayaki Teramoto, Taketoshi Toyama
  • Patent number: 11002498
    Abstract: An aluminum alloy fin material for a heat exchanger in the present invention comprises an aluminum alloy having a composition containing Mn: 1.2 to 2.0%, Cu: 0.05 to 0.20%, Si: 0.5 to 1.30%, Fe: 0.05 to 0.5%, and Zn: 1.0 to 3.0% by mass and a remainder comprising Al and an unavoidable impurity, further containing one or two or more of Ti: 0.01 to 0.20%, Cr: 0.01 to 0.20% and Mg: 0.01 to 0.20% by mass as desired, and, after heating in brazing, has a tensile strength of 140 MPa or more, a proof stress of 50 MPa or more, an electrical conductivity of 42% IACS or more, an average grain diameter of 150 ?m or more and less than 700 ?m, and a potential of ?800 mV or more and ?720 mV or less.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: May 11, 2021
    Assignees: MITSUBISHI ALUMINUM CO., LTD., DENSO CORPORATION
    Inventors: Shigeki Nakanishi, Shohei Iwao, Masakazu Edo, Hayaki Teramoto, Manabu Hasegawa, Michiyasu Yamamoto, Shoei Teshima
  • Publication number: 20210001436
    Abstract: An aluminum alloy clad material having four layers includes: a sacrificial material on one surface of a core material; and an Al—Si—Mg—Bi-based brazing material which clads the other surface thereof on one surface of the sacrificial material on an opposite side to the core material, the brazing material containing Si: 6.0% to 14.0%, Mg: 0.05% to 1.5%, Bi: 0.05% to 0.25%, Sr: 0.0001% to 0.1%, and Al balance, and satisfying (Bi+Mg)×Sr?0.1, Mg—Bi-based compounds contained in the brazing material with a diameter of 0.1-5.0 ?m are more than 20 in number per 10,000-?m2 and the Mg—Bi-based compounds with a diameter of 5.0 ?m or more are less than 2 before brazing, and the core material contains Mn: 1.0% to 1.7%, Si: 0.2% to 1.0%, Fe: 0.1% to 0.5%, Cu: 0.1% to 0.7%, and a balance consisting of Al and inevitable impurities.
    Type: Application
    Filed: June 30, 2020
    Publication date: January 7, 2021
    Applicants: Mitsubishi Aluminum Co., Ltd., DENSO CORPORATION
    Inventors: Yoshiki MORI, Hideyuki MIYAKE, Michihide YOSHINO, Shohei IWAO, Masakazu EDO, Naoki SUGIMOTO, Nobuhiro HONMA, Shogo YAMADA, Hayaki TERAMOTO, Taketoshi TOYAMA
  • Publication number: 20210001434
    Abstract: An aluminum alloy clad material includes: a sacrificial material on one surface of a core material; and an Al—Si—Mg—Bi-based brazing material disposed on other surface of the core material, contains, by mass %, Si: 6.0% to 14.0%, Mg: 0.05% to 1.5%, Bi: 0.05% to 0.25%, Sr: 0.0001% to 0.1%, and a balance consisting of Al and inevitable impurities, and satisfies a relationship of (Bi+Mg)×Sr?0.1 by mass %, in which Mg—Bi-based compounds contained in the Al—Si—Mg—Bi-based brazing material with a diameter of 0.1 ?m or more and less than 5.0 ?m are more than 20 in number per 10,000-?m2 and the Mg—Bi-based compounds with a diameter of 5.0 ?m or more are less than 2 in number, and the core material contains Mn: 0.9% to 1.7%, Si: 0.2% to 1.0%, Fe: 0.1% to 0.5%, Cu: 0.08% to 1.0%, and a balance consisting of Al and inevitable impurities.
    Type: Application
    Filed: June 30, 2020
    Publication date: January 7, 2021
    Applicants: Mitsubishi Aluminum Co., Ltd., DENSO CORPORATION
    Inventors: Yoshiki MORI, Hideyuki MIYAKE, Michihide YOSHINO, Shohei IWAO, Masakazu EDO, Naoki SUGIMOTO, Nobuhiro HONMA, Shogo YAMADA, Hayaki TERAMOTO, Taketoshi TOYAMA
  • Publication number: 20210001437
    Abstract: A sacrificial material on one surface of a core material, a Al brazing material containing Si: 6.0% to 14.0%, Mg: 0.05% to 1.5%, Bi: 0.05% to 0.25%, Sr: 0.0001% to 0.1%, and Al balance and satisfying (Bi+Mg)×Sr?0.1 is disposed on the other surface, Mg-Bi-based compounds of the brazing material with a diameter of 0.1-5.0 ?m are more than 20 per 10,000-?m2 and the Mg-Bi-based compounds with a diameter of 5.0 ?m or more are less than 2 before brazing, the core material contains Mn: 1.0% to 1.7%, Si: 0.2% to 1.0%, Fe: 0.1% to 0.5%, Cu: 0.08% to 1.0%, Mg: 0.1% to 0.7%, and Al balance, the sacrificial material contains Zn: 0.5% to 6.0% and Mg of which a content is limited to 0.1% or less, and a Mg concentration on a surface of the sacrificial material after brazing is 0.15% or less.
    Type: Application
    Filed: July 1, 2020
    Publication date: January 7, 2021
    Applicants: Mitsubishi Aluminum Co., Ltd., DENSO CORPORATION
    Inventors: Yoshiki MORI, Hideyuki MIYAKE, Michihide YOSHINO, Shohei IWAO, Masakazu EDO, Naoki SUGIMOTO, Nobuhiro HONMA, Shogo YAMADA, Hayaki TERAMOTO, Taketoshi TOYAMA
  • Publication number: 20210001435
    Abstract: An Al—Si—Mg—Bi-based brazing material containing Si: 6.0% to 14.0%, Fe: 0.05% to 0.3%, Mg: 0.02% to 1.5%, Bi: 0.05% to 0.25%, Sr: 0.0001% to 0.1%, and a balance of Al and inevitable impurities, and satisfies (Bi+Mg)×Sr?0.1, is disposed on both surfaces of a core material, Mg—Bi-based compounds of the brazing material with a diameter of 0.1 ?m or more and less than 5.0 ?m in terms of equivalent circle diameter are more than 20 in number in 10,000 ?m2 and the Mg—Bi-based compounds with diameter of 5.0 ?m or more are less than 2 in number in 10,000 ?m2, the core material contains Mn: 0.8% to 1.8%, Si: 0.01% to 1.0%, Fe: 0.1% to 0.5%, and a balance of Al and inevitable impurities, and a cathode current density of a brazing material layer after a brazing heat treatment is 0.1 mA/cm2 or less.
    Type: Application
    Filed: June 30, 2020
    Publication date: January 7, 2021
    Applicants: Mitsubishi Aluminum Co., Ltd., DENSO CORPORATION
    Inventors: Yoshiki MORI, Hideyuki MIYAKE, Michihide YOSHINO, Shohei IWAO, Masakazu EDO, Naoki SUGIMOTO, Nobuhiro HONMA, Shogo YAMADA, Hayaki Teramoto, Taketoshi Toyama
  • Patent number: 10518363
    Abstract: An aluminum alloy brazing sheet has high strength, corrosion resistance and elongation, and includes an aluminum alloy clad material. The material includes a core material, one surface of which is clad with a sacrificial material and an other surface of which is clad with an Al—Si-based or Al—Si—Zn-based brazing filler metal. The core material has a composition containing 1.3 to 2.0% Mn, 0.6 to 1.3% Si, 0.1 to 0.5% Fe and 0.7 to 1.3% Cu, by mass, with the balance Al and impurities. The sacrificial material has a composition containing more than 4.0% to 8.0% Zn, 0.7 to 2.0% Mn, 0.3 to 1.0% Si, 0.3 to 1.0% Fe and 0.05 to 0.3% Ti, by mass, with the balance Al and impurities. At least the core material has a lamellar crystal grain structure. Elongation of material is at least 4% and a tensile strength after brazing is at least 170 MPa.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: December 31, 2019
    Assignee: MITSUBISHI ALUMINUM CO., LTD.
    Inventors: Michihide Yoshino, Masakazu Edo
  • Patent number: 10378088
    Abstract: [Problem] There is provided an aluminum alloy fin material with high strength, superior brazability and superior corrosion resistance. [Solving means] An aluminum alloy fin material has a composition, in % by mass, of the following: Zr: 0.05 to 0.25%, Mn: 1.3 to 1.8%, Si: 0.7 to 1.3%, Fe: 0.10 to 0.35%, and Zn: 1.2 to 3.0%, the remainder being Al and inevitable impurities. The aluminum alloy fin material has a solidus temperature of 615° C. or higher, a tensile strength after brazing of 135 MPa or higher, a pitting potential after brazing in the range of ?900 to ?780 mV, and an average crystal grain diameter in a rolled surface after brazing in the range of 200 ?m to 1,000 ?m.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: August 13, 2019
    Assignee: MITSUBISHI ALUMINUM CO., LTD.
    Inventors: Michihide Yoshino, Masakazu Edo
  • Publication number: 20170349980
    Abstract: An aluminum alloy fin material has a composition, in % by mass, of the following: Zr: 0.05 to 0.25%, Mn: 1.3 to 1.8%, Si: 0.7 to 1.3%, Fe: 0.10 to 0.35%, and Zn: 1.2 to 3.0%, the remainder being Al and inevitable impurities. The aluminum alloy fin material has a solidus temperature of 615° C. or higher, a tensile strength after brazing of 135 MPa or higher, a pitting potential after brazing in the range of ?900 to ?780 mV, and an average crystal grain diameter in a rolled surface after brazing in the range of 200 ?m to 1,000 ?m.
    Type: Application
    Filed: December 14, 2015
    Publication date: December 7, 2017
    Applicant: MITSUBISHI ALUMINUM CO., LTD.
    Inventors: Michihide YOSHINO, Masakazu EDO
  • Publication number: 20170304957
    Abstract: An aluminum alloy brazing sheet has high strength, corrosion resistance and elongation, and includes an aluminum alloy clad material. The material includes a core material, one surface of which is clad with a sacrificial material and an other surface of which is clad with an Al—Si-based or Al—Si—Zn-based brazing filler metal. The core material has a composition containing 1.3 to 2.0% Mn, 0.6 to 1.3% Si, 0.1 to 0.5% Fe and 0.7 to 1.3% Cu, by mass, with the balance Al and impurities. The sacrificial material has a composition containing more than 4.0% to 8.0% Zn, 0.7 to 2.0% Mn, 0.3 to 1.0% Si, 0.3 to 1.0% Fe and 0.05 to 0.3% Ti, by mass, with the balance Al and impurities. At least the core material has a lamellar crystal grain structure. Elongation of material is at least 4% and a tensile strength after brazing is at least 170 MPa.
    Type: Application
    Filed: November 9, 2015
    Publication date: October 26, 2017
    Applicant: MITSUBISHI ALUMINUM CO., LTD.
    Inventors: Michihide YOSHINO, Masakazu EDO
  • Publication number: 20160187079
    Abstract: An aluminum alloy fin material for a heat exchanger in the present invention comprises an aluminum alloy having a composition containing Mn: 1.2 to 2.0%, Cu: 0.05 to 0.20%, Si: 0.5 to 1.30%, Fe: 0.05 to 0.5%, and Zn: 1.0 to 3.0% by mass and a remainder comprising Al and an unavoidable impurity, further containing one or two or more of Ti: 0.01 to 0.20%, Cr: 0.01 to 0.20% and Mg: 0.01 to 0.20% by mass as desired, and, after heating in brazing, has a tensile strength of 140 MPa or more, a proof stress of 50 MPa or more, an electrical conductivity of 42% IACS or more, an average grain diameter of 150 ?m or more and less than 700 ?m, and a potential of ?800 mV or more and ?720 mV or less.
    Type: Application
    Filed: December 28, 2015
    Publication date: June 30, 2016
    Applicants: MITSUBISHI ALUMINUM CO., LTD., DENSO CORPORATION
    Inventors: Shigeki NAKANISHI, Shohei IWAO, Masakazu EDO, Hayaki TERAMOTO, Manabu HASEGAWA, Michiyasu YAMAMOTO, Shoei TESHIMA
  • Patent number: 9237682
    Abstract: This power module substrate with a heat sink includes a power module substrate having a circuit layer disposed on one surface of an insulating layer, and a heat sink bonded to the other surface of this power module substrate, wherein the bonding surface of the heat sink and the bonding surface of the power module substrate are each composed of aluminum or an aluminum alloy, a bonding layer (50) having a Mg-containing compound (52) (excluding MgO) which contains Mg dispersed in an Al—Si eutectic composition is formed at the bonding interface between the heat sink and the power module substrate, and the thickness t of this bonding layer (50) is within a range from 5 ?m to 80 ?m.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: January 12, 2016
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Yoshiyuki Nagatomo, Hiroya Ishizuka, Toshiyuki Nagase, Yoshirou Kuromitsu, Masakazu Edo, Hideyuki Miyake
  • Patent number: 9033206
    Abstract: In order to enable a satisfactory fluxless brazing without needing flux or vacuum facilities, a brazing object including an aluminum alloy material provided with an Al—Si—Mg brazing filler metal is joined by the Al—Si—Mg brazing filler metal without the use of flux by heating the aluminum alloy material, when raising the temperature in a brazing furnace, at least in a temperature range of 450° C. to before melting of the filler metal under a first inert gas atmosphere having an oxygen concentration of preferably 50 ppm and following by heating at least at or above a temperature at which the filler metal starts to melt under a second inert gas atmosphere having an oxygen concentration of preferably 25 ppm and a nitrogen gas concentration of preferably 10% by volume or less.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: May 19, 2015
    Assignee: MITSUBISHI ALUMINUM CO., LTD.
    Inventors: Masakazu Edo, Hideyuki Miyake, Masatoshi Akiyama, Yuji Nomura, Norihiro Nose, Hiroki Amano
  • Publication number: 20150055303
    Abstract: This power module substrate with a heat sink includes a power module substrate having a circuit layer disposed on one surface of an insulating layer, and a heat sink bonded to the other surface of this power module substrate, wherein the bonding surface of the heat sink and the bonding surface of the power module substrate are each composed of aluminum or an aluminum alloy, a bonding layer (50) having a Mg-containing compound (52) (excluding MgO) which contains Mg dispersed in an Al—Si eutectic composition is formed at the bonding interface between the heat sink and the power module substrate, and the thickness t of this bonding layer (50) is within a range from 5 ?m to 80 ?m.
    Type: Application
    Filed: March 29, 2013
    Publication date: February 26, 2015
    Inventors: Yoshiyuki Nagatomo, Hiroya Ishizuka, Toshiyuki Nagase, Yoshirou Kuromitsu, Masakazu Edo, Hideyuki Miyake