Patents by Inventor Masakazu Nakayama

Masakazu Nakayama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8282802
    Abstract: Provided with a work electrodeposition coating method for immersing a work in a paint in an electrodeposition tank provided with a first positive electrode for supplying a low voltage and a second positive electrode for supplying a high voltage to carry out electrodeposition coating of a work surface.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: October 9, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kimihiro Sato, Hidetoshi Kato, Masakazu Nakayama
  • Publication number: 20100200414
    Abstract: Provided with a work electrodeposition coating method for immersing a work in a paint in an electrodeposition tank provided with a first positive electrode for supplying a low voltage and a second positive electrode for supplying a high voltage to carry out electrodeposition coating of a work surface.
    Type: Application
    Filed: August 27, 2008
    Publication date: August 12, 2010
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kimihiro Sato, Hidetoshi Kato, Masakazu Nakayama
  • Patent number: 7711238
    Abstract: An optical fiber that includes a core containing a first concentration of germanium, an inner cladding arranged on the core, the inner cladding containing a second concentration of germanium and having a first diffusion coefficient, and an outer cladding arranged on the inner cladding, the outer cladding having a second diffusion coefficient, where the first diffusion coefficient is larger than the second diffusion coefficient, and where the first concentration of germanium is about 200% or more of the second concentration of germanium. An optical fiber constructed in this manner can be spliced with an optical fiber having a different MFD, such as a single-mode optical fiber or an erbium-doped optical fiber, with low splice loss and a sufficient splicing strength.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: May 4, 2010
    Assignee: Fujikura Ltd.
    Inventors: Masashi Ikeda, Masakazu Nakayama, Kuniharu Himeno, Masaaki Ohtsuka, Masakazu Oohashi, Daiichiro Tanaka
  • Patent number: 7508115
    Abstract: A horn that can suppress oscillation components other than the component in the horizontal direction, a horn unit, and a bonding apparatus using same are provided. The horn has a cross-section variable section in which a cross section perpendicular to the lengthwise direction (X direction) thereof has a first region extending in the Z direction and a pair of second regions sandwiching the first region from Y direction. In the position P3 corresponding to an anti-node of a standing wave of oscillations excited in the horn, a sectional area S1 of the first region assumes a maximum and a sectional area S2 of the second region assumes a minimum. With a transition from the position P3 to the other positions corresponding to nodes, the sectional area S1 decreases and the sectional area S2 increases. As a result, oscillation components other than those in the X direction are suppressed.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: March 24, 2009
    Assignee: TDK Corporation
    Inventors: Norihiko Kawada, Yuji Saito, Masakazu Nakayama, Toru Mizuno, Toshinobu Miyagoshi, Junichi Kamata
  • Patent number: 7496261
    Abstract: A dispersion compensating optical fiber for NZ-DSFs, includes: an uncovered dispersion compensating optical fiber; a double-layered resin coating disposed around the uncovered dispersion compensating optical fiber; and an outer coating layer having a thickness of 3 to 7 ?m, containing silicone in an amount of 1 to 5% by weight, and disposed around the double-layered resin coating. The outer diameter of the uncovered dispersion compensating optical fiber is in a range from 90 to 125 ?m, an outer diameter of the dispersion compensating optical fiber is in a range from 180 to 250 ?m, and the amount of silicone contained in the outer coating layer is determined such that an adhesive property of the outer coating layer is 1 gf/mm or less.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: February 24, 2009
    Assignee: Fujikura Ltd.
    Inventors: Kazuhiko Aikawa, Yutaka Nagasawa, Shogo Shimizu, Takaaki Suzuki, Masakazu Nakayama, Kuniharu Himeno, Ryozo Yamauchi, Keiji Ohashi, Munehisa Fujimaki
  • Patent number: 7406236
    Abstract: An optical fiber that includes a core containing a first concentration of germanium, an inner cladding arranged on the core, the inner cladding containing a second concentration of germanium and having a first diffusion coefficient, and an outer cladding arranged on the inner cladding, the outer cladding having a second diffusion coefficient, where the first diffusion coefficient is larger than the second diffusion coefficient, and where the first concentration of germanium is about 200% or more of the second concentration of germanium. An optical fiber constructed in this manner can be spliced with an optical fiber having a different MFD, such as a single-mode optical fiber or an erbium-doped optical fiber, with low splice loss and a sufficient splicing strength.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: July 29, 2008
    Assignee: Fujikura Ltd.
    Inventors: Masashi Ikeda, Masakazu Nakayama, Kuniharu Himeno, Masaaki Ohtsuka, Masakazu Oohashi, Daiichiro Tanaka
  • Patent number: 7346258
    Abstract: An optical fiber that includes a core containing a first concentration of germanium, an inner cladding arranged on the core, the inner cladding containing a second concentration of germanium and having a first diffusion coefficient, and an outer cladding arranged on the inner cladding, the outer cladding having a second diffusion coefficient, where the first diffusion coefficient is larger than the second diffusion coefficient, and where the first concentration of germanium is about 200% or more of the second concentration of germanium. An optical fiber constructed in this manner can be spliced with an optical fiber having a different MFD, such as a single-mode optical fiber or an erbium-doped optical fiber, with low splice loss and a sufficient splicing strength.
    Type: Grant
    Filed: January 5, 2005
    Date of Patent: March 18, 2008
    Assignee: Fujikura Ltd.
    Inventors: Masashi Ikeda, Masakazu Nakayama, Kuniharu Himeno, Masaaki Ohtsuka, Masakazu Oohashi, Daiichiro Tanaka
  • Publication number: 20080025679
    Abstract: An optical fiber that includes a core containing a first concentration of germanium, an inner cladding arranged on the core, the inner cladding containing a second concentration of germanium and having a first diffusion coefficient, and an outer cladding arranged on the inner cladding, the outer cladding having a second diffusion coefficient, where the first diffusion coefficient is larger than the second diffusion coefficient, and where the first concentration of germanium is about 200% or more of the second concentration of germanium. An optical fiber constructed in this manner can be spliced with an optical fiber having a different MFD, such as a single-mode optical fiber or an erbium-doped optical fiber, with low splice loss and a sufficient splicing strength.
    Type: Application
    Filed: September 28, 2007
    Publication date: January 31, 2008
    Applicant: FUJIKURA LTD.
    Inventors: Masashi IKEDA, Masakazu NAKAYAMA, Kuniharu HIMENO, Masaaki OHTSUKA, Masakazu OOHASHI, Daiichiro TANAKA
  • Publication number: 20070144680
    Abstract: A horn that can suppress oscillation components other than the component in the horizontal direction, a horn unit, and a bonding apparatus using same are provided. In the horn 50 in accordance with the present invention, oscillations are applied by an oscillator 42. The horn 50 has a cross-section variable section 54 in which a cross section perpendicular to the lengthwise direction (X direction) of the horn 50 has a first region A1 extending in the Z direction and a pair of second regions A2 sandwiching the first region A1 from the direction (Y direction) perpendicular to the Z direction. In the position P3 corresponding to an anti-node of a standing wave of oscillations excited in the horn 50, a sectional area S1 of the first region A1 assumes a maximum and a sectional area S2 of the second region A2 assumes a minimum.
    Type: Application
    Filed: December 18, 2006
    Publication date: June 28, 2007
    Applicant: TDK CORPORATION
    Inventors: Norihiko Kawada, Yuji Saito, Masakazu Nakayama, Toru Mizuno, Toshinobu Miyagoshi, Junichi Kamata
  • Patent number: 7233728
    Abstract: A dispersion-compensated optical fiber which does not cause an increase in a loss if it is wound in a small reel and has a stable temperature characteristics is provided, wherein, in a wavelength range from. A dispersion-compensated optical fiber is formed such that, in at least a wavelength between 1.53 to 1.63 ?m, a bending loss of with a 20 mm bending diameter is 5 dB/m or lower, a wavelength dispersion is ?120 ps/nm/km or lower, a cut-off wavelength under a usage condition is 1.53 ?m or lower, an outer diameter of the cladding is 80 to 100 ?m, an outer diameter of a coating is 160 to 200 ?m, and a viscosity of a surface of a coating resin is 10 gf/mm or lower. It is set such that b/a is 1.5 to 3.5, c/b is 1.2 to 2.0, a radius of a core is 4 to 8 ?m, ?1 is +1.6% to +2.6%, ?2 is ?0.30% to ?1.4%, and ?3 is ?0.30% to +1.0%. Young's modulus of a first coating layer is 0.15 kgf/mm2 or lower and its thickness is 20 to 30 ?m.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: June 19, 2007
    Assignee: Fujikura Ltd.
    Inventors: Kazuhiko Aikawa, Shogo Shimizu, Ryuji Suzuki, Masakazu Nakayama, Kuniharu Himeno
  • Publication number: 20060140565
    Abstract: An optical fiber that includes a core containing a first concentration of germanium, an inner cladding arranged on the core, the inner cladding containing a second concentration of germanium and having a first diffusion coefficient, and an outer cladding arranged on the inner cladding, the outer cladding having a second diffusion coefficient, where the first diffusion coefficient is larger than the second diffusion coefficient, and where the first concentration of germanium is about 200% or more of the second concentration of germanium. An optical fiber constructed in this manner can be spliced with an optical fiber having a different MFD, such as a single-mode optical fiber or an erbium-doped optical fiber, with low splice loss and a sufficient splicing strength.
    Type: Application
    Filed: February 16, 2006
    Publication date: June 29, 2006
    Inventors: Masashi Ikeda, Masakazu Nakayama, Kuniharu Himeno, Masaaki Ohtsuka, Masakazu Oohashi, Daiichiro Tanaka
  • Publication number: 20060062534
    Abstract: A dispersion compensating optical fiber for NZ-DSFs, includes: an uncovered dispersion compensating optical fiber; a double-layered resin coating disposed around the uncovered dispersion compensating optical fiber; and an outer coating layer having a thickness of 3 to 7 ?m, containing silicone in an amount of 1 to 5% by weight, and disposed around the double-layered resin coating. The outer diameter of the uncovered dispersion compensating optical fiber is in a range from 90 to 125 ?m, an outer diameter of the dispersion compensating optical fiber is in a range from 180 to 250 ?m, and the amount of silicone contained in the outer coating layer is determined such that an adhesive property of the outer coating layer is 1 gf/mm or less.
    Type: Application
    Filed: August 15, 2005
    Publication date: March 23, 2006
    Inventors: Kazuhiko Aikawa, Yutaka Nagasawa, Shogo Shimizu, Takaaki Suzuki, Masakazu Nakayama, Kuniharu Himeno, Ryozo Yamauchi, Keiji Ohashi, Munehisa Fujimaki
  • Patent number: 6965719
    Abstract: A dispersion compensating optical fiber includes an uncovered dispersion compensating optical fiber containing a core and a cladding, and a resin coating which is disposed around the uncovered dispersion compensating optical fiber, wherein the resin coating has an adhesive property of 10 g/mm or less, and which includes an outer coating layer which is formed to have a thickness of 3 ?m or more, and the outer diameter of the uncovered dispersion compensating optical fiber is in a range from 90 to 125 ?m, and the outer diameter of the dispersion compensating optical fiber is in a range from 180 to 250 ?m.
    Type: Grant
    Filed: March 21, 2002
    Date of Patent: November 15, 2005
    Assignee: Fujikura Ltd.
    Inventors: Kazuhiko Aikawa, Yutaka Nagasawa, Shogo Shimizu, Takaaki Suzuki, Masakazu Nakayama, Kuniharu Himeno, Ryozo Yamauchi, Keiji Ohashi, Munehisa Fujimaki
  • Publication number: 20050249471
    Abstract: A dispersion-compensated optical fiber which does not cause an increase in a loss if it is wound in a small reel and has a stable temperature characteristics is provided. A dispersion-compensated optical fiber is formed such that, in at least a wavelength between 1.53 to 1.63 ?m, a bending loss of 20 mm bending diameter is 5 dB/m or lower, a wavelength dispersion is ?120 ps/nm/km or lower, a cut-off wavelength under a usage condition is 1.53 ?m or lower, an outer diameter of the cladding is 80 to 100 ?m, an outer diameter of a coating is 160 to 200 ?m, a viscosity of a surface of a coating resin is 10 gf/mm or lower. It is set such that b/a is 1.5 to 3.5, c/b is 1.2 to 2.0, a radius of a core is 4 to 8 ?m, ?1 is +1.6% to +2.6%, ?2 is ?0.30% to ?1.4%, and ?3 is ?0.3 0% to +1.0%. Young's modulus of a first coating layer is 0.15 kgf/nun 2 or lower and its thickness is 20 to 30 ?m. Young's modulus of a second coating layer is 50 kgf/mm2 or lower and its thickness is 15 to 30 ?m.
    Type: Application
    Filed: March 13, 2003
    Publication date: November 10, 2005
    Inventors: Kazuhiko Aikawa, Shogo Shimizu, Ryuji Suzuki, Masakazu Nakayama, Kuniharu Himeno
  • Patent number: 6949902
    Abstract: A controller of a rotating electric machine for a vehicle has a magnetic field electric current command arithmetic device for commanding a magnetic field electric current by the command of a torque and electric power command arithmetic device, an electric power converter functioning as a rectifier or an inverter, and a magnetic field electric current command restraining device for restraining a three-phase line electric current by restraining and controlling an output of the magnetic field electric current command arithmetic device when the rotating electric machine functions as an electric generator.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: September 27, 2005
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Masakazu Nakayama, Masaru Kobayashi, Masato Mori, Kiyoharu Anzai
  • Patent number: 6940250
    Abstract: In a synchronous motor control device that corrects a deviation in rotational position which is related to a rotational position detector for a synchronous motor on which vector-control is performed, the synchronous motor control device includes: a current instruction generator that disables a torque instruction to set d-axis and q-axis current instructions as zero when a phase correction instruction is inputted; a current controller that outputs d-axis and q-axis voltage instructions based on the d-axis and q-axis current instructions; a phase correction quantity detector for determining the amount of offset in which the d-axis voltage instruction becomes zero when the phase correction instruction is inputted and the d-axis voltage instruction is not zero; an adder for adding a rotor positional angle and the amount of offset; and a voltage converter for determining three-phase voltage instructions based on the additional value, the d-axis and q-axis voltage instructions.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: September 6, 2005
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Shinji Nishimura, Masakazu Nakayama
  • Patent number: 6937805
    Abstract: A dispersion compensating fiber, which has a negative dispersion slope with a large absolute value while maintaining the absolute value of the chromatic dispersion, and which has sufficient dispersion slope compensation properties even for the non-zero dispersion shifted optical fiber requiring a large RDS for dispersion compensation. In this dispersion compensating fiber, the radius of a ring core region is set in a range from 6.7 ?m to 10.7 ?m, the radius ratio of a depressed core region relative to a central core region is set in a range from 2.0 to 3.0, and the radius ratio of the ring core region relative to the depressed core region is set in a range from 1.3 to 2.0, the relative refractive index difference of the central core region relative to the cladding is set in a range from +1.00% to +1.80%, the relative refractive index difference of the depressed core region relative to the cladding is set in a range from ?1.20% to ?1.
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: August 30, 2005
    Assignee: Fujikura, Ltd.
    Inventors: Kazuhiko Aikawa, Shogo Shimizu, Takaaki Suzuki, Ryuji Suzuki, Masakazu Nakayama, Kuniharu Himeno
  • Publication number: 20050135762
    Abstract: An optical fiber that includes a core containing a first concentration of germanium, an inner cladding arranged on the core, the inner cladding containing a second concentration of germanium and having a first diffusion coefficient, and an outer cladding arranged on the inner cladding, the outer cladding having a second diffusion coefficient, where the first diffusion coefficient is larger than the second diffusion coefficient, and where the first concentration of germanium is about 200% or more of the second concentration of germanium. An optical fiber constructed in this manner can be spliced with an optical fiber having a different MFD, such as a single-mode optical fiber or an erbium-doped optical fiber, with low splice loss and a sufficient splicing strength.
    Type: Application
    Filed: January 5, 2005
    Publication date: June 23, 2005
    Inventors: Masashi Ikeda, Masakazu Nakayama, Kuniharu Himeno, Masaaki Ohtsuka, Masakazu Oohashi, Daiichiro Tanaka
  • Publication number: 20050104551
    Abstract: In a synchronous motor control device that corrects a deviation in rotational position which is related to a rotational position detector for a synchronous motor on which vector-control is performed, the synchronous motor control device includes: a current instruction generator that disables a torque instruction to set d-axis and q-axis current instructions as zero when a phase correction instruction is inputted; a current controller that outputs d-axis and q-axis voltage instructions based on the d-axis and q-axis current instructions; a phase correction quantity detector for determining the amount of offset in which the d-axis voltage instruction becomes zero when the phase correction instruction is inputted and the d-axis voltage instruction is not zero; an adder for adding a rotor positional angle and the amount of offset; and a voltage converter for determining three-phase voltage instructions based on the additional value, the d-axis and q-axis voltage instructions.
    Type: Application
    Filed: February 25, 2004
    Publication date: May 19, 2005
    Inventors: Shinji Nishimura, Masakazu Nakayama
  • Publication number: 20050093519
    Abstract: A controller of a rotating electric machine for a vehicle has a magnetic field electric current command arithmetic device for commanding a magnetic field electric current by the command of a torque and electric power command arithmetic device, an electric power converter functioning as a rectifier or an inverter, and a magnetic field electric current command restraining device for restraining a three-phase line electric current by restraining and controlling an output of the magnetic field electric current command arithmetic device when the rotating electric machine functions as an electric generator.
    Type: Application
    Filed: December 15, 2004
    Publication date: May 5, 2005
    Inventors: Masakazu Nakayama, Masaru Kobayashi, Masato Mori, Kiyoharu Anzai