Patents by Inventor Masaki Koga

Masaki Koga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200146523
    Abstract: An autonomous cleaner includes a side brush that is provided to a bottom face of a body and sweeps up dust on a floor surface and a napped cleaning fabric that is provided in a rotating region of the side brush and wipes off the dust attached to the side brush. The side brush includes a brush shaft disposed at a position that is a predetermined distance above the floor surface and a pair of bristle bundles having different lengths. A shorter bristle bundle in the pair has a length that is sufficient to bring at least a tip end portion of the shorter bristle bundle into contact with the napped cleaning fabric. In this way, the dust attached to the side brush is wiped off by the napped cleaning fabric, which prevents the dust from being swept outside the body due to a centrifugal force. In addition, by disposing the brush shaft at a predetermined distance from the floor surface, it is possible to suppress entanglement with a carpet and the like and avoid a collision with a step.
    Type: Application
    Filed: May 28, 2018
    Publication date: May 14, 2020
    Inventors: Shinya FUJIEDA, Masaki KOGA
  • Patent number: 9291143
    Abstract: A spark ignition internal combustion engine includes an exhaust gas reflux device capable of refluxing exhaust gas having passed through a catalyst for exhaust gas purification to an intake passage, an ignition timing control means for setting an ignition timing retard amount capable of preventing knocking according to a NOx concentration in the exhaust gas while the exhaust gas is refluxed, a NOx concentration estimation means for estimating the NOx concentration in the exhaust gas, and a purification performance reduction determination means for determining a reduction in purification performance of the catalyst. The ignition timing control means sets the ignition timing retard amount based on the NOx concentration in the exhaust gas before passage through the catalyst if the purification performance reduction determination means determines that the purification performance of the catalyst has been reduced to a state set in advance.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: March 22, 2016
    Assignee: NISSAN MOTOR CO., LTD.
    Inventor: Masaki Koga
  • Patent number: 9133794
    Abstract: An EGR gas cooling device for hybrid vehicle provided in an EGR system for refluxing a part of exhaust gas of an engine as EGR gas to an intake passage and configured to cool the EGR gas in a hybrid vehicle including the engine and a motor as travel drive sources of the vehicle includes an EGR cooler for cooling the EGR gas using a refrigerant flowing in a strong electric cooling circuit for cooling the motor.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: September 15, 2015
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Masaki Koga, Yuko Mito
  • Publication number: 20150136094
    Abstract: An EGR gas cooling device for hybrid vehicle provided in an EGR system for refluxing a part of exhaust gas of an engine as EGR gas to an intake passage and configured to cool the EGR gas in a hybrid vehicle including the engine and a motor as travel drive sources of the vehicle includes an EGR cooler for cooling the EGR gas using a refrigerant flowing in a strong electric cooling circuit for cooling the motor.
    Type: Application
    Filed: April 16, 2013
    Publication date: May 21, 2015
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Masaki Koga, Yuko Mito
  • Publication number: 20140298777
    Abstract: A spark ignition internal combustion engine includes an exhaust gas reflux device capable of refluxing exhaust gas having passed through a catalyst for exhaust gas purification to an intake passage, an ignition timing control means for setting an ignition timing retard amount capable of preventing knocking according to a NOx concentration in the exhaust gas while the exhaust gas is refluxed, a NOx concentration estimation means for estimating the NOx concentration in the exhaust gas, and a purification performance reduction determination means for determining a reduction in purification performance of the catalyst. The ignition timing control means sets the ignition timing retard amount based on the NOx concentration in the exhaust gas before passage through the catalyst if the purification performance reduction determination means determines that the purification performance of the catalyst has been reduced to a state set in advance.
    Type: Application
    Filed: September 10, 2012
    Publication date: October 9, 2014
    Applicant: NISSAN MOTOR CO., LTD.
    Inventor: Masaki Koga
  • Patent number: 8607545
    Abstract: An air-fuel ratio control device is provided for controlling the air-fuel ratio of an engine. The device includes an exhaust passage having a main catalytic converter and a bypass passage having a bypass catalytic converter, the bypass passage diverging from the exhaust passage at an upstream junction and rejoining the exhaust passage at a downstream junction. A valve mechanism disposed in the exhaust passage between the upstream junction and the downstream junction moves between a closed state and an open state. During a predetermined period of time after the valve mechanism opens to permit flow in the exhaust passage, the air-fuel ratio of the engine is controlled based on a signal from a first air-fuel ratio sensor in the bypass passage using a low response correction value that is less than a normal response correction value that would be used when the valve mechanism is closed.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: December 17, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yoshiyuki Ootake, Yasuji Ishizuka, Masaki Koga
  • Patent number: 8606446
    Abstract: A control system of a hybrid vehicle, includes: an engine; a motor capable of driving the engine; an oil pump for supplying a lubricant oil to a lubrication requiring portion of the engine; and an engine lubrication controller configured to make the following operations in a case that a stop state of the engine continues for more than or equal to a certain period: when a vehicle stop condition that a driver has no intention of travel is established, supplying, by the oil pump, the lubricant oil to the lubrication requiring portion of the engine, and rotating the engine by the motor without igniting the engine, thereby implementing an engine lubrication control.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: December 10, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Takao Ito, Yoshiyuki Ootake, Masaki Koga, Tetsuya Iwasaki, Takashi Ogino, Yasuhiro Konishi, Tomoyuki Koike
  • Publication number: 20120117950
    Abstract: An air-fuel ratio control device is provided for controlling the air-fuel ratio of an engine. The device includes an exhaust passage having a main catalytic converter and a bypass passage having a bypass catalytic converter, the bypass passage diverging from the exhaust passage at an upstream junction and rejoining the exhaust passage at a downstream junction. A valve mechanism disposed in the exhaust passage between the upstream junction and the downstream junction moves between a closed state and an open state. During a predetermined period of time after the valve mechanism opens to permit flow in the exhaust passage, the air-fuel ratio of the engine is controlled based on a signal from a first air-fuel ratio sensor in the bypass passage using a low response correction value that is less than a normal response correction value that would be used when the valve mechanism is closed.
    Type: Application
    Filed: January 24, 2012
    Publication date: May 17, 2012
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Yoshiyuki Ootake, Yasuji Ishizuka, Masaki Koga
  • Patent number: 8176728
    Abstract: An air-fuel ratio control device is provided for controlling the air-fuel ratio of an engine. The device includes an exhaust passage having a main catalytic converter and a bypass passage having a bypass catalytic converter, the bypass passage diverging from the exhaust passage at an upstream junction and rejoining the exhaust passage at a downstream junction. A valve mechanism disposed in the exhaust passage between the upstream junction and the downstream junction moves between a closed state and an open state. During a predetermined period of time after the valve mechanism opens to permit flow in the exhaust passage, the air-fuel ratio of the engine is controlled based on a signal from a first air-fuel ratio sensor in the bypass passage using a low response correction value that is less than a normal response correction value that would be used when the valve mechanism is closed.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: May 15, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yoshiyuki Ootake, Yasuji Ishizuka, Masaki Koga
  • Patent number: 8141343
    Abstract: An air-fuel ratio control apparatus is basically provided with an exhaust system, a pair of sensors and a controller. The exhaust system includes an exhaust channel having a main catalytic converter, a bypass channel having a bypass catalytic converter, and a valve mechanism disposed in the exhaust channel to switch a pathway for exhaust gas from the exhaust channel to the bypass channel. The sensors output signals indicative of air-fuel ratios of exhaust flowing in their respective channels. The controller has first and second air-fuel ratio control sections that control an engine air-fuel ratio based on outputs of the sensors, respectively. The controller has a control mode switching section that switches control from the first air-fuel ratio control section to the second air-fuel ratio control section after a prescribed interval of time has elapsed from when the valve mechanism is switched from a closed state to an open state.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: March 27, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hiroyuki Nagai, Yoshiyuki Ootake, Yasuji Ishizuka, Masaki Koga
  • Patent number: 8034975
    Abstract: The present invention provides a method of manufacturing a highly pure ammonium succinate solution including the steps of (A) producing calcium succinate trihydrate by crystallization fermentation of a microorganism; (B) converting calcium succinate trihydrate to calcium succinate monohydrate by transition crystallization; (C) separating the calcium succinate monohydrate crystals; (D) substituting the calcium salt in the calcium succinate monohydrate with ammonium salt resulting in an ammonium succinate solution; and (E) removing the solid calcium carbonate from the ammonium succinate solution.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: October 11, 2011
    Assignee: Ajinomoto Co., Inc.
    Inventors: Kiyohiko Nishi, Hiroshi Kaneko, Hirofumi Tasaki, Masaki Koga, Tetsuo Tanegawa, Seisaku Furuya, Kenji Fujiwara, Takeru Sato
  • Publication number: 20110213521
    Abstract: A control system of a hybrid vehicle, includes: an engine; a motor capable of driving the engine; an oil pump for supplying a lubricant oil to a lubrication requiring portion of the engine; and an engine lubrication controller configured to make the following operations in a case that a stop state of the engine continues for more than or equal to a certain period: when a vehicle stop condition that a driver has no intention of travel is established, supplying, by the oil pump, the lubricant oil to the lubrication requiring portion of the engine, and rotating the engine by the motor without igniting the engine, thereby implementing an engine lubrication control.
    Type: Application
    Filed: February 24, 2011
    Publication date: September 1, 2011
    Inventors: Takao ITO, Yoshiyuki Ootake, Masaki Koga, Tetsuya Iwasaki, Takashi Ogino, Yasuhiro Konishi, Tomoyuki Koike, Hiroyuki Suzuki
  • Publication number: 20100094051
    Abstract: The present invention provides a method of manufacturing a highly pure ammonium succinate solution including the steps of (A) producing calcium succinate trihydrate by crystallization fermentation of a microorganism; (B) converting calcium succinate trihydrate to calcium succinate monohydrate by transition crystallization; (C) separating the calcium succinate monohydrate crystals; (D) substituting the calcium salt in the calcium succinate monohydrate with ammonium salt resulting in an ammonium succinate solution; and (E) removing the solid calcium carbonate from the ammonium succinate solution.
    Type: Application
    Filed: November 18, 2009
    Publication date: April 15, 2010
    Inventors: Kiyohiko Nishi, Hiroshi Kaneko, Hirofumi Tasaki, Masaki Koga, Tetsuo Tanegawa, Seisaku Furuya, Kenji Fujiwara, Takeru Sato
  • Patent number: 7536999
    Abstract: An air-fuel ratio control apparatus is basically provided with an exhaust system, a first sensor and a controller. The exhaust system includes an exhaust channel with a main catalytic converter disposed therein, a bypass channel with a bypass catalytic converter disposed therein, and a valve mechanism disposed in the exhaust channel between the connection points of the exhaust channel to switch a pathway for exhaust gas from the exhaust channel to the bypass channel. The first sensor detects a property indicative of an air-fuel ratio of exhaust flowing in the exhaust channel at a point downstream of the valve mechanism. The controller adjusts an element temperature of the first sensor to a prescribed temperature or less during a prescribed interval of time from when the valve mechanism is switched from a closed state to an open state.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: May 26, 2009
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yoshiyuki Ootake, Yasuji Ishizuka, Masaki Koga, Kenichi Sato
  • Publication number: 20090043481
    Abstract: An air-fuel ratio control device is provided for controlling the air-fuel ratio of an engine. The device includes an exhaust passage having a main catalytic converter and a bypass passage having a bypass catalytic converter, the bypass passage diverging from the exhaust passage at an upstream junction and rejoining the exhaust passage at a downstream junction. A valve mechanism disposed in the exhaust passage between the upstream junction and the downstream junction moves between a closed state and an open state. During a predetermined period of time after the valve mechanism opens to permit flow in the exhaust passage, the air-fuel ratio of the engine is controlled based on a signal from a first air-fuel ratio sensor in the bypass passage using a low response correction value that is less than a normal response correction value that would be used when the valve mechanism is closed.
    Type: Application
    Filed: July 31, 2008
    Publication date: February 12, 2009
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Yoshiyuki OOTAKE, Yasuji Ishizuka, Masaki Koga
  • Publication number: 20080172167
    Abstract: An air-fuel ratio control apparatus is basically provided with an exhaust system, a first sensor and a controller. The exhaust system includes an exhaust channel with a main catalytic converter disposed therein, a bypass channel with a bypass catalytic converter disposed therein, and a valve mechanism disposed in the exhaust channel between the connection points of the exhaust channel to switch a pathway for exhaust gas from the exhaust channel to the bypass channel. The first sensor detects a property indicative of an air-fuel ratio of exhaust flowing in the exhaust channel at a point downstream of the valve mechanism. The controller adjusts an element temperature of the first sensor to a prescribed temperature or less during a prescribed interval of time from when the valve mechanism is switched from a closed state to an open state.
    Type: Application
    Filed: December 20, 2007
    Publication date: July 17, 2008
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Yoshiyuki OOTAKE, Yasuji ISHIZUKA, Masaki KOGA, Kenichi SATO
  • Publication number: 20080172166
    Abstract: An air-fuel ratio control apparatus is basically provided with an exhaust system, a pair of sensors and a controller. The exhaust system includes an exhaust channel having a main catalytic converter, a bypass channel having a bypass catalytic converter, and a valve mechanism disposed in the exhaust channel to switch a pathway for exhaust gas from the exhaust channel to the bypass channel. The sensors output signals indicative of air-fuel ratios of exhaust flowing in their respective channels. The controller has first and second air-fuel ratio control sections that control an engine air-fuel ratio based on outputs of the sensors, respectively. The controller has a control mode switching section that switches control from the first air-fuel ratio control section to the second air-fuel ratio control section after a prescribed interval of time has elapsed from when the valve mechanism is switched from a closed state to an open state.
    Type: Application
    Filed: December 20, 2007
    Publication date: July 17, 2008
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Hiroyuki NAGAI, Yoshiyuki OOTAKE, Yasuji ISHIZUKA, Masaki KOGA
  • Patent number: 7169078
    Abstract: An engine idle speed control device set a target idle speed NsetN for a non-traveling range is set to a high value to activate the catalytic converter early, after the engine is started. Upon detecting that the automatic transmission has been shifted from a non-traveling range to a traveling range, the target idle speed is lowered to a first traveling idle speed Nset1. A feedback gain G used for feedback control of the ignition timing is then set to a larger gain value. The larger gain value is set such that it varies based on the temperature of the automatic transmission fluid or other parameter indicative of the engine friction and/or automatic transmission friction. As a result, the ignition timing is retarded in a precise manner, the engine speed is reduced, and the clutch engagement shock is reduced.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: January 30, 2007
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Tsuyoshi Ishikawa, Eri Imai, Masaki Koga
  • Patent number: 7141000
    Abstract: An engine idle speed control device set a target idle speed NsetN for a non-traveling range is set to a high value to activate the catalytic converter early, after the engine is started. Upon detecting that the automatic transmission has been shifted from a non-traveling range to a traveling range, the target idle speed is lowered to a first traveling idle speed Nset1 for a prescribed period (200 ms). After the prescribed period elapses, the target idle speed is lowered even further to a second traveling target idle speed Nset2. When the target idle speed is set to the first traveling target idle speed Nset1, the ignition timing retardation amount RET is set in accordance with the actual engine rotational speed Ne in such a fashion that the higher the engine rotational speed Ne is, the more the ignition timing ADV is retarded.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: November 28, 2006
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Tomoya Mori, Eri Imai, Masaki Koga
  • Publication number: 20050188953
    Abstract: An engine idle speed control device set a target idle speed NsetN for a non-traveling range is set to a high value to activate the catalytic converter early, after the engine is started. Upon detecting that the automatic transmission has been shifted from a non-traveling range to a traveling range, the target idle speed is lowered to a first traveling idle speed Nset1. A feedback gain G used for feedback control of the ignition timing is then set to a larger gain value. The larger gain value is set such that it varies based on the temperature of the automatic transmission fluid or other parameter indicative of the engine friction and/or automatic transmission friction. As a result, the ignition timing is retarded in a precise manner, the engine speed is reduced, and the clutch engagement shock is reduced.
    Type: Application
    Filed: February 28, 2005
    Publication date: September 1, 2005
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Tsuyoshi Ishikawa, Eri Imai, Masaki Koga