Patents by Inventor Masami Inoue

Masami Inoue has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140325830
    Abstract: By supplying power from the power-supplying resonator to the power-receiving resonator by means of resonance, an electromagnetic space having a relatively low magnetic field strength is formed between the power-supplying resonator and the power-receiving resonator. In so doing, the position where the electromagnetic space is formed is changed by setting the frequency of the AC power supplied from an AC power source to the power-supplying module to an antiphase resonance mode or an inphase resonance mode, and the size of the electromagnetic space is changed by changing the distance between the power-supplying coil and the power-supplying resonator and the distance between the power-receiving resonator and the power-receiving coil.
    Type: Application
    Filed: May 1, 2013
    Publication date: November 6, 2014
    Applicant: NITTO DENKO CORPORATION
    Inventors: Takezo Hatanaka, Masami Inoue, Hisashi Tsuda
  • Patent number: 8853546
    Abstract: A base insulating layer is formed on a suspension body. A lead wire for plating and a wiring trace are integrally formed on the base insulating layer. A cover insulating layer is formed on the base insulating layer to cover the lead wire for plating and the wiring trace. A thickness of a portion of the cover insulating layer above a region of the base insulating layer in which the lead wire for plating is formed is set smaller than the thickness of a portion of the cover insulating layer above other regions of the base insulating layer.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: October 7, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Daisuke Yamauchi, Tetsuya Oosawa, Mitsuru Honjo, Masami Inoue
  • Patent number: 8837873
    Abstract: Provided are an opto-electric hybrid board and a manufacturing method therefor. An optical waveguide unit includes protruding portions which are extendingly provided at portions of at least one of an undercladding layer and an overcladding layer, and the protruding portions are located and formed at predetermined locations with respect to a light transmitting surface of a core. An electric circuit unit includes a bent portion having fitting holes into which the protruding portions fit and having an optical element. The fitting holes are located and formed at predetermined locations with respect to the optical element. The optical waveguide unit and the electric circuit unit are coupled to each other in a state in which the protruding portions fit into the fitting holes to form an opto-electric hybrid board.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: September 16, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Akiko Nagafuji, Yuichi Tsujita, Masayuki Hodono, Masami Inoue, Mitsuru Honjo
  • Publication number: 20140225129
    Abstract: An electrode is formed on at least one surface of first and second surfaces of a dielectric film formed of resin to be capable of receiving or transmitting an electromagnetic wave in a terahertz band. A semiconductor device operable in the terahertz band is mounted on at least one surface of the first and second surfaces of the dielectric film to be electrically connected to the electrode. A portion of a support layer is formed on the first or second surface of the dielectric film, and a dielectric lens is supported by another portion of the support layer. Another portion of the support layer is bent with respect to the portion such that the electromagnetic wave in the terahertz band transmitted or received by the electrode permeates through the dielectric lens.
    Type: Application
    Filed: February 11, 2014
    Publication date: August 14, 2014
    Applicant: Nitto Denko Corporation
    Inventors: Masami INOUE, Masayuki HODONO, Mitsuru HONJO
  • Publication number: 20140203994
    Abstract: An antenna module includes a support body and an antenna body. The support body has a flat support surface and a support surface that extends obliquely upward from one side of the support surface. The antenna body is attached to the support surface while being bent along the support surface of the support body. The antenna body is constituted by a dielectric film, a pair of electrodes and a semiconductor device. The pair of electrodes is formed on a main surface of the dielectric film, and the semiconductor device is mounted on the end of the electrode.
    Type: Application
    Filed: January 15, 2014
    Publication date: July 24, 2014
    Applicant: Nitto Denko Corporation
    Inventors: Masayuki HODONO, Masami INOUE, Mitsuru HONJO
  • Publication number: 20140132466
    Abstract: A dielectric film has a main surface and a back surface and is formed of resin. Electrodes that can receive or transmit an electromagnetic wave having a frequency of not less than 0.05 THz and not more than 10 THz in the terahertz band are formed on the main surface of the dielectric film. The electrodes constitute a tapered slot antenna. The dielectric film and the electrodes are formed of a flexible printed circuit board. A semiconductor device that is operable at a frequency in the terahertz band is mounted on the main surface of the dielectric film so as to be electrically connected to the electrodes.
    Type: Application
    Filed: November 4, 2013
    Publication date: May 15, 2014
    Applicants: OSAKA UNIVERSITY, NITTO DENKO CORPORATION
    Inventors: Masami INOUE, Masayuki HODONO, Mitsuru HONJO, Tadao NAGATSUMA, Masayuki FUJITA
  • Patent number: 8644655
    Abstract: Provided are an opto-electric hybrid board which eliminates the necessity of an aligning operation of a core of an optical waveguide unit and an optical element of an electric circuit unit and which is excellent in mass-productivity, and a manufacturing method therefor. The opto-electric hybrid board includes an optical waveguide unit and an electric circuit unit having an optical element mounted thereon, the electric circuit unit being coupled to the optical waveguide unit. The optical waveguide unit includes protruding portions which are extendingly provided at portions of at least one of the undercladding layer and the overcladding layer, and are located and formed at predetermined locations with respect to a light transmitting surface of a core. The electric circuit unit includes fitting holes into which the protruding portions fit, and are located and formed at predetermined locations with respect to the optical element.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: February 4, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Yuichi Tsujita, Masayuki Hodono, Akiko Nagafuji, Masami Inoue, Ryusuke Naito, Mitsuru Honjo
  • Patent number: 8644660
    Abstract: Provided are an opto-electric hybrid board and a manufacturing method. The opto-electric hybrid board includes an optical waveguide unit and an electric circuit unit having an optical element mounted thereon. The optical waveguide unit includes socket portions for locating the electric circuit unit, which are formed on a surface of an undercladding layer and formed of the same material as a core. The socket portions are located at predetermined locations with respect to one end surface of a core. The electric circuit unit includes bent portions which are formed by bending a part of an electric circuit board so as to stand, for fitting into the socket portions. The bent portions are located at predetermined locations with respect to the optical element. The optical waveguide unit and the electric circuit unit are coupled in a state in which the bent portions fit into the socket portions.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: February 4, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Akiko Nagafuji, Yuichi Tsujita, Masayuki Hodono, Masami Inoue
  • Patent number: 8606056
    Abstract: Provided are an opto-electric hybrid board and a manufacturing method therefor. The opto-electric hybrid board includes an optical waveguide unit and an electric circuit unit having an optical element mounted thereon, the electric circuit unit being coupled to the optical waveguide unit. The optical waveguide unit includes notch portions for locating the electric circuit unit, which is formed in portions of at least one of an undercladding layer and an overcladding layer, and the notch portions are located and formed at predetermined locations with respect to one end surface of a core. The electric circuit unit includes bent portions, which fit into the notch portions, and the bent portions are located and formed at predetermined locations with respect to the optical element. The optical waveguide unit and the electric circuit unit are coupled to each other under a state in which the bent portions fit into the notch portions.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: December 10, 2013
    Assignee: Nitto Denko Corporation
    Inventors: Yuichi Tsujita, Masayuki Hodono, Akiko Nagafuji, Masami Inoue, Mayu Takase
  • Patent number: 8367937
    Abstract: A first insulating layer is formed on a suspension body. A write wiring trace is formed on the first insulating layer. A second insulating layer is formed on the first insulating layer to cover the write wiring trace. A write wiring trace and read wiring traces are formed on the second insulating layer. The write wiring trace is arranged above the write wiring trace. The write wiring trace includes a conductor layer and reinforcing alloy layers. The reinforcing alloy layers are sequentially formed to cover an upper surface and side surfaces of the conductor layer.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: February 5, 2013
    Assignee: Nitto Denko Corporation
    Inventors: Voonyee Ho, Takeshi Tanaka, Masami Inoue, Martin John McCaslin
  • Publication number: 20130002041
    Abstract: In the disclosed magnetic element (1) for wireless power transmission, in a cross section that matches the direction of magnetic coupling, a conductor section (2) and a magnetic material section (3) that abuts the conductor section (2) are disposed in parallel in a direction perpendicular to the direction of magnetic coupling, and one of either the conductor section (2) or the magnetic material section (3) has a protruding region (61) that protrudes in the direction of magnetic coupling more than the other does.
    Type: Application
    Filed: March 2, 2011
    Publication date: January 3, 2013
    Applicant: NITTO DENKO CORPORATION
    Inventors: Takezo Hatanaka, Mitsuru Honjo, Takeshi Tanaka, Masami Inoue
  • Publication number: 20120251036
    Abstract: Provided are an opto-electric hybrid board and a manufacturing method therefor. The opto-electric hybrid board includes an optical waveguide unit and an electric circuit unit having an optical element mounted thereon, the electric circuit unit being coupled to the optical waveguide unit using coupling pins. The optical waveguide unit includes fitting holes for fitting the coupling pins thereinto, which are formed in a surface of an overcladding layer, located and formed at predetermined locations with respect to one end surface of a core. The electric circuit unit includes fitting through holes for fitting the coupling pins therethrough, located and formed at predetermined locations with respect to the optical element. The optical waveguide unit and the electric circuit unit are coupled to each other in a state in which the coupling pins fit through the fitting through holes and fit into the fitting holes.
    Type: Application
    Filed: March 7, 2012
    Publication date: October 4, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Masami INOUE, Masayuki HODONO, Akiko NAGAFUJI, Yuichi TSUJITA
  • Publication number: 20120251055
    Abstract: Provided are an opto-electric hybrid board and a manufacturing method. The opto-electric hybrid board includes an optical waveguide unit and an electric circuit unit having an optical element mounted thereon. The optical waveguide unit includes socket portions for locating the electric circuit unit, which are formed on a surface of an undercladding layer and formed of the same material as a core. The socket portions are located at predetermined locations with respect to one end surface of a core. The electric circuit unit includes bent portions which are formed by bending a part of an electric circuit board so as to stand, for fitting into the socket portions. The bent portions are located at predetermined locations with respect to the optical element. The optical waveguide unit and the electric circuit unit are coupled in a state in which the bent portions fit into the socket portions.
    Type: Application
    Filed: March 1, 2012
    Publication date: October 4, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Akiko Nagafuji, Yuichi Tsujita, Masayuki Hodono, Masami Inoue
  • Publication number: 20120251037
    Abstract: Provided are an opto-electric hybrid board and a manufacturing method therefor. The opto-electric hybrid board includes an optical waveguide unit and an electric circuit unit having an optical element mounted thereon, the electric circuit unit being coupled to the optical waveguide unit. The optical waveguide unit includes notch portions for locating the electric circuit unit, which is formed in portions of at least one of an undercladding layer and an overcladding layer, and the notch portions are located and formed at predetermined locations with respect to one end surface of a core. The electric circuit unit includes bent portions, which fit into the notch portions, and the bent portions are located and formed at predetermined locations with respect to the optical element. The optical waveguide unit and the electric circuit unit are coupled to each other under a state in which the bent portions fit into the notch portions.
    Type: Application
    Filed: March 7, 2012
    Publication date: October 4, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Yuichi TSUJITA, Masayuki HODONO, Akiko NAGAFUJI, Masami INOUE, Mayu TAKASE
  • Publication number: 20120251038
    Abstract: Provided are an opto-electric hybrid board and a manufacturing method therefor. An optical waveguide unit includes protruding portions which are extendingly provided at portions of at least one of an undercladding layer and an overcladding layer, and the protruding portions are located and formed at predetermined locations with respect to a light transmitting surface of a core. An electric circuit unit includes a bent portion having fitting holes into which the protruding portions fit and having an optical element. The fitting holes are located and formed at predetermined locations with respect to the optical element. The optical waveguide unit and the electric circuit unit are coupled to each other in a state in which the protruding portions fit into the fitting holes to form an opto-electric hybrid board.
    Type: Application
    Filed: March 7, 2012
    Publication date: October 4, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Akiko Nagafuji, Yuichi Tsujita, Masayuki Hodono, Masami Inoue, Mitsuru Honjo
  • Publication number: 20120237158
    Abstract: Provided are an opto-electric hybrid board which eliminates the necessity of an aligning operation of a core of an optical waveguide unit and an optical element of an electric circuit unit and which is excellent in mass-productivity, and a manufacturing method therefor. The opto-electric hybrid board includes an optical waveguide unit and an electric circuit unit having an optical element mounted thereon, the electric circuit unit being coupled to the optical waveguide unit. The optical waveguide unit includes fitting holes which are formed in a surface of an overcladding layer and are located and formed at predetermined locations with respect to one end surface of a core. The electric circuit unit includes protruding portions which fit into the fitting holes and are located and formed at predetermined locations with respect to the optical element.
    Type: Application
    Filed: February 28, 2012
    Publication date: September 20, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Masami Inoue, Masayuki Hodono, Akiko Nagafuji, Yuichi Tsujita, Mitsuru Honjo
  • Publication number: 20120237159
    Abstract: Provided are an opto-electric hybrid board which eliminates the necessity of an aligning operation of a core of an optical waveguide unit and an optical element of an electric circuit unit and which is excellent in mass-productivity, and a manufacturing method therefor. The opto-electric hybrid board includes an optical waveguide unit and an electric circuit unit having an optical element mounted thereon, the electric circuit unit being coupled to the optical waveguide unit. The optical waveguide unit includes protruding portions which are extendingly provided at portions of at least one of the undercladding layer and the overcladding layer, and are located and formed at predetermined locations with respect to a light transmitting surface of a core. The electric circuit unit includes fitting holes into which the protruding portions fit, and are located and formed at predetermined locations with respect to the optical element.
    Type: Application
    Filed: February 28, 2012
    Publication date: September 20, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Yuichi Tsujita, Masayuki Hodono, Akiko Nagafuji, Masami Inoue, Ryusuke Naito, Mitsuru Honjo
  • Patent number: 8241695
    Abstract: Disclosed is a process for producing a fat and oil composition for deep-frying, which has superior flavor and is suppressed, for a long time, in color development and unfavorable odor during heating. Specifically disclosed is a process for producing a fat and oil composition for deep-frying, which is characterized in that at least one phosphorus-derived component selected from a crude oil or a partially refined fat and oil, is added into a refined edible fat and oil in such an amount that the phosphorus content is within the range of 0.1 to 5.0 ppm.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: August 14, 2012
    Assignee: J-Oil Mills, Inc.
    Inventors: Yuzo Yamada, Takehiko Sekiguchi, Keiko Awae, Masami Inoue, Shouji Matsumoto, Hiroshi Shiramasa
  • Publication number: 20110059222
    Abstract: Disclosed is a process for producing a fat and oil composition for deep-frying, which has superior flavor and is suppressed, for a long time, in color development and unfavorable odor during heating. Specifically disclosed is a process for producing a fat and oil composition for deep-frying, which is characterized in that at least one phosphorus-derived component selected from a crude oil or a partially refined fat and oil, is added into a refined edible fat and oil in such an amount that the phosphorus content is within the range of 0.1 to 5.0 ppm.
    Type: Application
    Filed: August 27, 2008
    Publication date: March 10, 2011
    Inventors: Yuzo Yamada, Takehiko Sekiguchi, Keiko Awae, Masami Inoue, Shouji Matsumoto, Hiroshi Shiramasa
  • Publication number: 20110011626
    Abstract: A base insulating layer is formed on a suspension body. A lead wire for plating and a wiring trace are integrally formed on the base insulating layer. A cover insulating layer is formed on the base insulating layer to cover the lead wire for plating and the wiring trace. A thickness of a portion of the cover insulating layer above a region of the base insulating layer in which the lead wire for plating is formed is set smaller than the thickness of a portion of the cover insulating layer above other regions of the base insulating layer.
    Type: Application
    Filed: July 16, 2010
    Publication date: January 20, 2011
    Applicant: NITTO DENKO CORPORATION
    Inventors: Daisuke YAMAUCHI, Tetsuya OOSAWA, Mitsuru HONJO, Masami INOUE