Patents by Inventor Masanari SUEOKA

Masanari SUEOKA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10648422
    Abstract: A control apparatus for an engine includes an engine, a state quantity setting device, a spark plug, and a controller. After the spark plug ignites air-fuel mixture to start combustion, combustion of unburned air-fuel mixture is caused by autoignition. The controller outputs a control signal to the state quantity setting device such that, when a number of revolutions of the engine is high, a temperature in a combustion chamber before start of compression is higher than that when the number of revolutions of the engine is low.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: May 12, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Atsushi Inoue, Masanari Sueoka, Kota Matsumoto, Tomonori Urushihara
  • Patent number: 10648443
    Abstract: A control apparatus for a compression autoignition engine controls compression autoignition by ignition. The control apparatus includes an injector, a spark plug, and a controller. The controller controls the injector so that fuel is injected by a plurality of divided injections, and thereafter, outputs a control signal to the spark plug at predetermined ignition timing so that, by ignition, unburned air-fuel mixture combusts by autoignition. Control is performed so that, when load on the engine is high, an amount of fuel injected at later timing among the plurality of injections becomes larger than when the load is low.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: May 12, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Atsushi Inoue, Masanari Sueoka, Kota Matsumoto, Tomonori Urushihara
  • Publication number: 20200141336
    Abstract: A control apparatus for an engine includes an engine, an EGR system, a spark plug, a controller, and a supercharging system. While a supercharging system is performing supercharging and the EGR system is introducing burned gas into a combustion chamber, in response to a control signal from the controller, the spark plug ignites air-fuel mixture at predetermined timing so that unburned air-fuel mixture combusts by autoignition after the air-fuel mixture starts to combust by the ignition.
    Type: Application
    Filed: August 25, 2017
    Publication date: May 7, 2020
    Inventors: Atsushi Inoue, Masanari Sueoka, Kota Matsumoto, Tomonori Urushihara
  • Publication number: 20200141377
    Abstract: A control apparatus for a compression autoignition engine controls compression autoignition by ignition. The control apparatus includes an injector, a spark plug, and a controller. The controller controls the injector so that fuel is injected by a plurality of divided injections, and thereafter, outputs a control signal to the spark plug at predetermined ignition timing so that, by ignition, unburned air-fuel mixture combusts by autoignition. Control is performed so that, when load on the engine is high, an amount of fuel injected at later timing among the plurality of injections becomes larger than when the load is low.
    Type: Application
    Filed: November 10, 2017
    Publication date: May 7, 2020
    Inventors: Atsushi Inoue, Masanari Sueoka, Kota Matsumoto, Tomonori Urushihara
  • Patent number: 10641197
    Abstract: A control system for a compression-ignition engine is provided, which includes an engine having a combustion chamber, an injector configured to supply fuel into the combustion chamber, a spark plug, a swirl valve provided to an intake passage of the engine, and a controller. The controller includes a processor configured to execute a swirl adjusting module to adjust a swirl valve opening to generate a swirl flow inside the combustion chamber, a fuel injection amount controlling module to control fuel injection amounts of pre-injection and post-injection so as to increase a ratio of an injection amount of the post-injection to a total fuel injection amount into the combustion chamber in one cycle as an engine speed increases, and a combustion controlling module to control the spark plug to ignite at a given ignition timing after the swirl generation and fuel injection, so that partial compression-ignition combustion is performed.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: May 5, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Masanari Sueoka, Takuya Ohura, Tatsuhiro Tokunaga, Keiji Maruyama, Tomohiro Nishida
  • Patent number: 10641193
    Abstract: A control system for a compression-ignition engine is provided, which includes an engine having a combustion chamber formed by a cylinder, a piston and a cylinder head, an injector, a spark plug, an exhaust gas recirculation (EGR) device configured to introduce into the combustion chamber a portion of burned gas generated inside the combustion chamber as EGR gas, an EGR controller configured to change an EGR ratio, the EGR controller changing the EGR ratio so that a compression start temperature of the combustion chamber rises as an engine load is reduced, and a controller connected to the injector and the spark plug to control them. The controller includes a processor configured to execute a combustion controlling module to output an instruction to the spark plug so as to ignite at an ignition timing after the EGR ratio adjustment so that partial compression-ignition combustion is performed.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: May 5, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Masanari Sueoka, Takuya Ohura, Tatsuhiro Tokunaga, Keiji Maruyama, Tomohiro Nishida
  • Patent number: 10641192
    Abstract: A control system for a compression-ignition engine is provided, which includes an engine having a combustion chamber formed by a cylinder, a piston and a cylinder head, an injector, a spark plug, an exhaust gas recirculation (EGR) device configured to introduce into the combustion chamber a portion of burned gas generated inside the combustion chamber as EGR gas, an EGR controller to change an EGR ratio, the EGR controller changing the EGR ratio so that a compression start temperature of the combustion chamber rises as an engine speed increases, and a controller connected to the injector and the spark plug to control them. The controller includes a processor configured to execute a combustion controlling module to output an ignition instruction to the spark plug so as to ignite at an ignition timing after the EGR ratio adjustment so that partial compression-ignition combustion is performed.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: May 5, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Masanari Sueoka, Takuya Ohura, Tatsuhiro Tokunaga, Keiji Maruyama, Tomohiro Nishida
  • Patent number: 10641188
    Abstract: A control apparatus for an engine includes an engine, a state quantity setting device, an injector, a spark plug, and a controller. The controller sets a G/F in a range from 18 to 50. After the spark plug ignites air-fuel mixture, unburned air-fuel mixture is combusted by autoignition.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: May 5, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Atsushi Inoue, Masanari Sueoka, Kota Matsumoto, Tomonori Urushihara
  • Patent number: 10612474
    Abstract: Disclosed is a control device for a multi-cylinder engine having a combustion chamber (19) to which an intake port (16) and an exhaust port (17) are connected. The control device comprises: an intake-side variable valve operating mechanism (71) for controlling a lift timing of two intake valves (21a, 21b) of the intake port (16); an exhaust-side variable valve operating mechanism (72) for controlling a lift timing of an exhaust valve (22a); and an exhaust-side valve operating mechanism (73) for driving an exhaust valve (22b) at a fixed timing. The control device is operable, when executing cylinder deactivation in a low engine load and low engine speed operating range, to cause the exhaust-side variable valve operating mechanism (72) to open the exhaust valve (22a) during downward movement of a piston (14) in a cylinder (18) being subjected to the cylinder deactivation.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: April 7, 2020
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Keitaro Ezumi, Kazuhiro Takemoto, Tomokuni Kusunoki, Atsushi Inoue, Akitomo Takagi, Masanari Sueoka, Masami Nishida, Kazufumi Kumakura, Kota Matsumoto, Tomohiro Hasegawa, Tadasu Hashiguchi, Toshiaki Takahashi, Masatoshi Hidaka
  • Patent number: 10605193
    Abstract: A control system for a compression-ignition engine is provided, which includes an engine having a combustion chamber, an injector configured to supply fuel into the combustion chamber, a spark plug, a swirl valve provided to an intake passage of the engine, and a controller connected to the injector, the spark plug and the swirl valve to control them. The controller includes a processor configured to execute a swirl adjusting module to adjust an opening of the swirl valve to generate a swirl flow inside the combustion chamber, a fuel injection timing controlling module to control a fuel injection timing and control the injector to retard the fuel injection timing as an engine speed increases, and a combustion controlling module to control the spark plug to ignite at a given ignition timing after the swirl generation and the fuel injection, so that partial compression-ignition combustion is performed.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: March 31, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Masanari Sueoka, Takuya Ohura, Tatsuhiro Tokunaga, Keiji Maruyama, Tomohiro Nishida
  • Publication number: 20200095903
    Abstract: A control device for engine comprising; a variable valve operating mechanism (72) which comprises a cam (72d) and a pressure chamber (72c) internally filled with engine oil; and a hydraulic valve (72b) associated with the pressure chamber (72c) and configured to be opened and closed to control the oil pressure to be applied to an intake valve (22). When the engine load falls within a given low engine load range, the valve opening timing of the intake valve (22) is increasingly retarded according to the engine load and as the engine load becomes higher, within a limit of a given timing, and, when the engine load is increased beyond the given low engine load range, the valve opening timing of the intake valve is fixed to the given timing.
    Type: Application
    Filed: March 29, 2017
    Publication date: March 26, 2020
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Masanari SUEOKA, Masatoshi HIDAKA, Toshiaki TAKAHASHI, Tadasu HASHIGUCHI
  • Patent number: 10513990
    Abstract: A PCM (100) selects one of a CI mode or an SI mode based on the operating conditions of the engine (1). In the CI mode, the engine (1) is operated by compression ignition combustion. In the SI mode, the engine (1) is operated by spark ignition combustion. if, while the engine (1) is being operated in the CI mode, a determination is made that an estimated value (Tc) of the catalyst temperature is lower than or equal to a warming start temperature (Ts), the PCM (100) further performs first warming control to assign four cylinders (18) as CI and SI cylinders, which perform the compression ignition combustion and the spark ignition combustion, respectively, such that the four cylinders (18) alternately perform the compression ignition combustion and the spark ignition combustion in accordance with the order of combustion of the cylinders.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: December 24, 2019
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Toshiaki Takahashi, Masanari Sueoka, Masatoshi Hidaka
  • Patent number: 10502147
    Abstract: This control apparatus for an engine includes an engine, an injector, a spark plug, an intake electric S-VT, an exhaust electric S-VT, and a controller. The controller outputs a control signal to at least one of the intake electric S-VT and the exhaust electric S-VT so as to perform valve control of opening an intake valve when an exhaust valve is open, and then outputs a control signal to the spark plug at predetermined ignition timing such that, after air-fuel mixture is ignited and combustion is started, unburned air-fuel mixture is combusted by autoignition.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: December 10, 2019
    Assignee: Mazda Motor Corporation
    Inventors: Atsushi Inoue, Masanari Sueoka, Kota Matsumoto, Tomonori Urushihara
  • Publication number: 20190360382
    Abstract: A compression-ignition engine control system is provided, which includes an intake variable mechanism and a controller. Within a first operating range and a second operating range on a higher engine load side, the controller controls the variable mechanism to form a gas-fuel ratio (G/F) lean environment in which an air-fuel ratio inside a cylinder is near a stoichiometric air-fuel ratio and burnt gas remains inside the cylinder, and controls a spark plug to spark-ignite mixture gas inside the cylinder to combust in a partial compression-ignition combustion. The controller controls the variable mechanism to advance the intake valve open timing on an advancing side of a TDC of the exhaust stroke, as the engine load increases within the first range, and retard the intake valve open timing on the advancing side of the TDC of the exhaust stroke, as the engine load increases within the second range.
    Type: Application
    Filed: May 14, 2019
    Publication date: November 28, 2019
    Inventors: Atsushi Inoue, Masanari Sueoka, Keiji Maruyama, Takuya Ohura, Tomohiro Nishida, Yusuke Kawai, Tetsuya Chikada, Tatsuhiro Tokunaga
  • Publication number: 20190360368
    Abstract: A method of implementing control logic of a compression-ignition engine is provided. A controller outputs a signal to a injector and a variable valve operating mechanism so that a gas-fuel ratio (G/F) becomes leaner than a stoichiometric air fuel ratio, and an air-fuel ratio (A/F) becomes equal to or richer than the stoichiometric air fuel ratio, and to an ignition plug so that unburnt mixture gas combusts by self-ignition after the ignition plug ignites mixture gas inside a combustion chamber. The method includes steps of determining a geometric compression ratio and determining the control logic defining an intake valve close timing IVC. IVC (deg.aBDC) is determined so that the following expression is satisfied: if the geometric compression ratio ? is 10??<17, 0.4234?2?22.926?+207.84+C?IVC??0.4234?2+22.926??167.84+C where C is a correction term according to an engine speed NE (rpm), C=3.3×10?10NE3?1.0×10?6NE2+7.0×10?4NE.
    Type: Application
    Filed: May 13, 2019
    Publication date: November 28, 2019
    Inventors: Masanari Sueoka, Atsushi Inoue, Keiji Maruyama, Takuya Ohura, Tomohiro Nishida, Yusuke Kawai, Tetsuya Chikada, Masatoshi Hidaka, Toshiaki Takahashi, Tatsuhiro Tokunaga
  • Publication number: 20190360422
    Abstract: A method of implementing control logic of a compression-ignition engine is provided. A control part of the engine performs a calculation according to the control logic corresponding to an engine operating state in response to a measurement of a measurement part, controls a fuel injection part, a variable valve operating mechanism, an ignition part and a supercharger so that a G/F becomes leaner than a stoichiometric air fuel ratio and a A/F becomes equal to or richer than the stoichiometric air fuel ratio, while causing the supercharger to boost, and controls the ignition part so that unburnt mixture gas combusts by self-ignition after the ignition. The method includes determining a supercharging pressure P, and determining control logic defining a close timing IVC of an intake valve. When determining the control logic, the close timing IVC (deg.aBDC) is determined so that the supercharging pressure P (kPa) satisfies the following expression: P?8.0×10?11IVC6?1.0×10?8IVC5+3.0×10?7IVC4?4.0×10?6IVC3+0.
    Type: Application
    Filed: May 13, 2019
    Publication date: November 28, 2019
    Inventors: Masanari Sueoka, Atsushi Inoue, Keiji Maruyama, Takuya Ohura, Tomohiro Nishida, Yusuke Kawai, Tetsuya Chikada, Tatsuhiro Tokunaga
  • Publication number: 20190360409
    Abstract: A method of implementing control logic of a compression ignition engine is provided. The engine includes an injector, a variable valve operating mechanism, an ignition plug, at least one sensor, and a processor. The processor outputs the signal to the ignition plug in a specific operating state so that unburnt mixture gas combusts by self ignition after the ignition plug ignites the mixture gas inside a combustion chamber. The method includes determining a geometric compression ratio ? of the engine, and determining control logic defining a valve opening angle CA of an intake valve. The valve opening angle CA (deg) is determined so that the following expression is satisfied, if the geometric compression ratio ? is ?<14, ?40?+800+D?CA?60??550+D,. Here, D is a correction term according to the engine speed NE (rpm), D=3.3×10?10NE3?1.0×10?6NE2+7.0×10?4NE.
    Type: Application
    Filed: May 14, 2019
    Publication date: November 28, 2019
    Inventors: Masanari Sueoka, Atsushi Inoue, Keiji Maruyama, Takuya Ohura, Tomohiro Nishida, Yusuke Kawai, Tetsuya Chikada, Tatsuhiro Tokunaga
  • Publication number: 20190360425
    Abstract: A compression-ignition engine control system is provided, which includes an intake phase-variable mechanism and a controller. The controller controls the intake phase-variable mechanism to form a gas-fuel ratio (G/F) lean environment in which burnt gas remains inside a cylinder and an air-fuel ratio is near a stoichiometric air-fuel ratio, and controls the spark plug to spark-ignite the mixture gas to combust in a partial compression-ignition combustion. The controller controls the intake phase-variable mechanism to retard, as an engine speed increases at a constant engine load, an intake valve close timing on a retarding side of BDC of intake stroke and an intake valve open timing on an advancing side of TDC of exhaust stroke, and controls the intake phase-variable mechanism so that a change rate in the intake valve open timing according to the engine speed becomes larger in a high engine speed range.
    Type: Application
    Filed: May 15, 2019
    Publication date: November 28, 2019
    Inventors: Atsushi Inoue, Masanari Sueoka, Keiji Maruyama, Takuya Ohura, Tomohiro Nishida, Yusuke Kawai, Tetsuya Chikada, Tatsuhiro Tokunaga
  • Publication number: 20190360450
    Abstract: A control system of a compression-ignition engine includes an intake variable mechanism and a controller. In a second operating range, the controller controls the intake variable mechanism so that, while partial compression-ignition combustion is performed under an air-fuel ratio (A/F) lean environment, an intake valve open timing takes timing at an advanced side of an exhaust TDC. In a first operating range on a lower load side, the controller controls the intake variable mechanism so that, while the partial compression-ignition combustion is performed under the A/F lean environment, under the same engine speed condition, the intake valve close timing is more retarded within a range on a retarded side of an intake BDC as the engine load decreases, and an absolute value of a change rate of the intake valve close timing to the engine load becomes larger than in the second range.
    Type: Application
    Filed: May 16, 2019
    Publication date: November 28, 2019
    Inventors: Masanari Sueoka, Atsushi Inoue, Keiji Maruyama, Takuya Ohura, Tomohiro Nishida, Yusuke Kawai, Tetsuya Chikada, Tatsuhiro Tokunaga
  • Publication number: 20190360449
    Abstract: A compression-ignition engine control system is provided, which includes an intake phase-variable mechanism and a controller. Within a first operating range and a second operating range on a higher engine load side, the controller controls the variable mechanism to form a gas-fuel ratio (G/F) lean environment in which an air-fuel ratio inside a cylinder is near a stoichiometric air-fuel ratio and burnt gas remains inside the cylinder, and controls a spark plug to spark-ignite mixture gas inside the cylinder to combust in a partial compression-ignition combustion. The controller controls the variable mechanism to retard the intake valve open timing on an advancing side of TDC of an exhaust stroke, as the engine load increases within the first range, and advance the intake valve close timing on a retarding side of TDC of intake stroke, as the engine load increases within the second range.
    Type: Application
    Filed: May 15, 2019
    Publication date: November 28, 2019
    Inventors: Atsushi Inoue, Masanari Sueoka, Keiji Maruyama, Takuya Ohura, Tomohiro Nishida, Yusuke Kawai, Tetsuya Chikada, Tatsuhiro Tokunaga