Patents by Inventor Masanobu Iwaya

Masanobu Iwaya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240113174
    Abstract: A laminate includes an amorphous glass substrate, and an AlN layer formed on the amorphous glass substrate. The AlN layer is c-axis oriented on the amorphous glass substrate, a glass transition temperature (Tg) of the amorphous glass substrate is 720° C. to 810° C., a coefficient of thermal expansion (CTE) of the amorphous glass substrate is 3.5×10?6 [1/K] to 4.0×10?6 [1/K], and a softening point of the amorphous glass substrate is 950° C. to 1050° C.
    Type: Application
    Filed: December 7, 2023
    Publication date: April 4, 2024
    Applicants: Japan Display Inc., MEIJO UNIVERSITY
    Inventors: Masanobu IKEDA, Arichika ISHIDA, Satoshi KAMIYAMA, Motoaki IWAYA, Tetsuya TAKEUCHI
  • Publication number: 20240063258
    Abstract: A semiconductor device has an active region through which current flows and an edge termination structure region arranged outside the active region. The semiconductor device includes a low-concentration semiconductor layer of a first conductivity type, and formed in the edge termination structure region, on a front surface of a semiconductor substrate. The semiconductor device includes a second semiconductor layer of a second conductivity type, in contact with one of a semiconductor layer of the second conductivity type in the active region and a semiconductor layer of the second conductivity type in contact with a source electrode. The second semiconductor layer has an impurity concentration that is lower than that of the semiconductor layer, and the second semiconductor layer is not in contact with a surface of the semiconductor substrate.
    Type: Application
    Filed: November 3, 2023
    Publication date: February 22, 2024
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Yusuke KOBAYASHI, Yasuhiko Oonishi, Masanobu Iwaya
  • Patent number: 11855134
    Abstract: A semiconductor device includes, as a semiconductor region in which semiconductor layers are formed, an active region through which current flows and an edge termination structure region outside the active region and in which an edge termination structure is formed. The semiconductor device includes as the semiconductor layers: a drift layer of a first conductivity type and a base layer of a second conductivity type, in contact with the edge termination region; and includes an interlayer insulating film provided on the semiconductor region, on a side thereof where the base layer is formed. The edge termination region has a first semiconductor layer of the second conductivity type, continuous from the base layer and having an outer peripheral end not in contact with the interlayer insulating film, and a second semiconductor layer of the first conductivity type, in contact with the first semiconductor layer and forming a first PN junction therewith.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: December 26, 2023
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Yusuke Kobayashi, Yasuhiko Oonishi, Masanobu Iwaya
  • Publication number: 20220302251
    Abstract: A silicon carbide semiconductor device includes, on a front surface of a silicon carbide semiconductor substrate of a first conductivity type, a first semiconductor layer of the first conductivity type, a second semiconductor layer of a second conductivity type, a third semiconductor layer of the first conductivity type, a first semiconductor region of the first conductivity type selectively provided on a first side of the third semiconductor layer opposite to a second side thereof facing the silicon carbide semiconductor substrate, second semiconductor regions of the second conductivity type that have an impurity concentration higher than that of the second semiconductor layer, trenches, gate electrodes provided via gate insulating films, an interlayer insulating film, a first electrode, and a second electrode. The first semiconductor region is thinner than a portion of the third semiconductor layer between the first semiconductor region and the second semiconductor layer.
    Type: Application
    Filed: February 23, 2022
    Publication date: September 22, 2022
    Applicants: FUJI ELECTRIC CO., LTD., DENSO CORPORATION
    Inventors: Masanobu IWAYA, Kensuke HATA
  • Patent number: 11063123
    Abstract: At an upper surface of a gate electrode, a recess occurs due to etching back of poly-silicon for forming the gate electrode. At an upper surface of an interlayer insulating film, a recess occurs in a portion that opposes in a depth direction, the recess of the upper surface of the gate electrode. A barrier metal includes sequentially stacked first to fourth metal films. The first metal film is a titanium nitride film that covers the surface of the interlayer insulating film and has an opening that exposes the recess of the upper surface of the interlayer insulating film. The second metal film is a titanium film that covers the first metal film and the source electrode, and is in contact with the interlayer insulating film, in the opening of the first metal film. The third and fourth metal films are a titanium nitride film and a titanium film, respectively.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: July 13, 2021
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Shin'ichi Nakamata, Masanobu Iwaya, Keiji Okumura
  • Publication number: 20210028276
    Abstract: A semiconductor device has an active region through which current flows and an edge termination structure region arranged outside the active region. The semiconductor device includes a low-concentration semiconductor layer of a first conductivity type, and formed in the edge termination structure region, on a front surface of a semiconductor substrate. The semiconductor device includes a second semiconductor layer of a second conductivity type, in contact with one of a semiconductor layer of the second conductivity type in the active region and a semiconductor layer of the second conductivity type in contact with a source electrode. The second semiconductor layer has an impurity concentration that is lower than that of the semiconductor layer, and the second semiconductor layer is not in contact with a surface of the semiconductor substrate.
    Type: Application
    Filed: September 30, 2020
    Publication date: January 28, 2021
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Yusuke KOBAYASHI, Yasuhiko Oonishi, Masanobu Iwaya
  • Patent number: 10840326
    Abstract: A semiconductor device has an active region through which current flows and an edge termination structure region arranged outside the active region. The semiconductor device includes a first semiconductor layer of a first conductivity type, and formed in the edge termination structure region, on a front surface of a semiconductor substrate. The semiconductor device includes a second semiconductor layer of a second conductivity type, in contact with one of a third semiconductor layer of the second conductivity type in the active region and a third semiconductor layer of the second conductivity type in contact with a source electrode. The second semiconductor layer has an impurity concentration that is lower than that of the third semiconductor layer, and the second semiconductor layer is not in contact with a surface of the first semiconductor layer.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: November 17, 2020
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Yusuke Kobayashi, Yasuhiko Oonishi, Masanobu Iwaya
  • Patent number: 10832914
    Abstract: In a vertical MOSFET of a trench gate structure, a high-concentration implantation region is provided in a p-type base region formed from a p-type silicon carbide layer formed by epitaxial growth, so as to include a portion in which a channel is formed. The high-concentration implantation region is formed by ion implantation of a p-type impurity into the p-type silicon carbide layer. The high-concentration implantation region is formed by p-type ion implantation and has an impurity concentration profile in which concentration differences in a depth direction form a bell-shaped curve at a peak of impurity concentration that is higher than that of the p-type silicon carbide layer. In the p-type base region, disorder occurs partially in the crystal structure consequent to the ion implantation for forming the high-concentration implantation region.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: November 10, 2020
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Setsuko Wakimoto, Masanobu Iwaya
  • Patent number: 10756200
    Abstract: A silicon carbide semiconductor element includes n-type silicon carbide epitaxial layers formed on an n+-type silicon carbide semiconductor substrate, plural p base layers selectively formed in surfaces of the silicon carbide epitaxial layers, a p-type silicon carbide epitaxial layer formed in the silicon carbide epitaxial layer, and a trench penetrating at least the silicon carbide epitaxial layer. The silicon carbide semiconductor element also includes, in a portion of the silicon carbide epitaxial layer, a mesa portion exposing the p base layer. The silicon carbide semiconductor element further includes, between consecutive mesa side faces of the mesa portion, a flat portion substantially parallel to the silicon carbide substrate. The remaining thickness of the exposed p base layer is larger than 0.5 ?m and smaller than 1.0 ?m.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: August 25, 2020
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Makoto Utsumi, Yasuhiko Oonishi, Kenji Fukuda, Shinsuke Harada, Masanobu Iwaya
  • Publication number: 20200091299
    Abstract: At an upper surface of a gate electrode, a recess occurs due to etching back of poly-silicon for forming the gate electrode. At an upper surface of an interlayer insulating film, a recess occurs in a portion that opposes in a depth direction, the recess of the upper surface of the gate electrode. A barrier metal includes sequentially stacked first to fourth metal films. The first metal film is a titanium nitride film that covers the surface of the interlayer insulating film and has an opening that exposes the recess of the upper surface of the interlayer insulating film. The second metal film is a titanium film that covers the first metal film and the source electrode, and is in contact with the interlayer insulating film, in the opening of the first metal film. The third and fourth metal films are a titanium nitride film and a titanium film, respectively.
    Type: Application
    Filed: July 24, 2019
    Publication date: March 19, 2020
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Shin'ichi NAKAMATA, Masanobu IWAYA, Keiji OKUMURA
  • Patent number: 10586703
    Abstract: In a vertical MOSFET of a trench gate structure, a high-concentration implantation region is provided in a p-type base region formed from a p-type silicon carbide layer formed by epitaxial growth, so as to include a portion in which a channel is formed. The high-concentration implantation region is formed by ion implantation of a p-type impurity into the p-type silicon carbide layer. The high-concentration implantation region is formed by p-type ion implantation and has an impurity concentration profile in which concentration differences in a depth direction form a bell-shaped curve at a peak of impurity concentration that is higher than that of the p-type silicon carbide layer. In the p-type base region, disorder occurs partially in the crystal structure consequent to the ion implantation for forming the high-concentration implantation region.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: March 10, 2020
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Setsuko Wakimoto, Masanobu Iwaya
  • Patent number: 10453954
    Abstract: In a termination structure region, a first semiconductor layer of a first conductivity type, with an impurity concentration lower than that of a semiconductor substrate, is provided on the substrate of the first conductivity type. A second semiconductor layer of a second conductivity type is provided on a first side of the first semiconductor layer, opposite to a second side facing the substrate. Trenches penetrate the second semiconductor layer. At the first side in the first semiconductor layer, a first semiconductor region of the second conductivity type, with an impurity concentration higher than that of the second semiconductor layer, is provided at a side closer to an active region, contacting the second semiconductor layer. A second semiconductor region of the first conductivity type is provided in the second semiconductor layer, outside and adjacent to one of the trenches that is disposed at a farthest position from the active region.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: October 22, 2019
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Masanobu Iwaya, Yasuhiko Oonishi, Yusuke Kobayashi
  • Publication number: 20190304787
    Abstract: In a vertical MOSFET of a trench gate structure, a high-concentration implantation region is provided in a p-type base region formed from a p-type silicon carbide layer formed by epitaxial growth, so as to include a portion in which a channel is formed. The high-concentration implantation region is formed by ion implantation of a p-type impurity into the p-type silicon carbide layer. The high-concentration implantation region is formed by p-type ion implantation and has an impurity concentration profile in which concentration differences in a depth direction form a bell-shaped curve at a peak of impurity concentration that is higher than that of the p-type silicon carbide layer. In the p-type base region, disorder occurs partially in the crystal structure consequent to the ion implantation for forming the high-concentration implantation region.
    Type: Application
    Filed: June 18, 2019
    Publication date: October 3, 2019
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Setsuko WAKIMOTO, Masanobu IWAYA
  • Patent number: 10403713
    Abstract: In a first main surface of a silicon carbide semiconductor base, a trench is formed. On a first main surface side of the silicon carbide semiconductor base, an n-type silicon carbide epitaxial layer is deposited. In a surface of the n-type silicon carbide epitaxial layer, an n-type high-concentration region is provided. In the surface of the n-type silicon carbide epitaxial layer, a first p-type base region and a second p+-type base region are selectively provided. The second p+-type base region is formed at the bottom of the trench. A depth of the n-type high-concentration region is deeper than that of the first p-type base region and the second p+-type base region. Thus, by an easy method, the electric field at a gate insulating film at the bottom of the trench is mitigated, enabling the breakdown voltage of the active region to be maintained and the ON resistance to be lowered.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: September 3, 2019
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Masanobu Iwaya, Akimasa Kinoshita, Shinsuke Harada, Yasunori Tanaka
  • Patent number: 10367092
    Abstract: In a vertical MOSFET of a trench gate structure, a high-concentration implantation region is provided in a p-type base region formed from a p-type silicon carbide layer formed by epitaxial growth, so as to include a portion in which a channel is formed. The high-concentration implantation region is formed by ion implantation of a p-type impurity into the p-type silicon carbide layer. The high-concentration implantation region is formed by p-type ion implantation and has an impurity concentration profile in which concentration differences in a depth direction form a bell-shaped curve at a peak of impurity concentration that is higher than that of the p-type silicon carbide layer. In the p-type base region, disorder occurs partially in the crystal structure consequent to the ion implantation for forming the high-concentration implantation region.
    Type: Grant
    Filed: January 3, 2017
    Date of Patent: July 30, 2019
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Setsuko Wakimoto, Masanobu Iwaya
  • Publication number: 20190206985
    Abstract: In a first main surface of a silicon carbide semiconductor base, a trench is formed. On a first main surface side of the silicon carbide semiconductor base, an n-type silicon carbide epitaxial layer is deposited. In a surface of the n-type silicon carbide epitaxial layer, an n-type high-concentration region is provided. In the surface of the n-type silicon carbide epitaxial layer, a first p-type base region and a second p+-type base region are selectively provided. The second p+-type base region is formed at the bottom of the trench. A depth of the n-type high-concentration region is deeper than that of the first p-type base region and the second p+-type base region. Thus, by an easy method, the electric field at a gate insulating film at the bottom of the trench is mitigated, enabling the breakdown voltage of the active region to be maintained and the ON resistance to be lowered.
    Type: Application
    Filed: March 6, 2019
    Publication date: July 4, 2019
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Masanobu IWAYA, Akimasa KINOSHITA, Shinsuke HARADA, Yasunori TANAKA
  • Patent number: 10276653
    Abstract: In a first main surface of a silicon carbide semiconductor base, a trench is formed. On a first main surface side of the silicon carbide semiconductor base, an n-type silicon carbide epitaxial layer is deposited. In a surface of the n-type silicon carbide epitaxial layer, an n-type high-concentration region is provided. In the surface of the n-type silicon carbide epitaxial layer, a first p-type base region and a second p+-type base region are selectively provided. The second p+-type base region is formed at the bottom of the trench. A depth of the n-type high-concentration region is deeper than that of the first p-type base region and the second p+-type base region. Thus, by an easy method, the electric field at a gate insulating film at the bottom of the trench is mitigated, enabling the breakdown voltage of the active region to be maintained and the ON resistance to be lowered.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: April 30, 2019
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Masanobu Iwaya, Akimasa Kinoshita, Shinsuke Harada, Yasunori Tanaka
  • Publication number: 20190035927
    Abstract: In a termination structure region, a first semiconductor layer of a first conductivity type, with an impurity concentration lower than that of a semiconductor substrate, is provided on the substrate of the first conductivity type. A second semiconductor layer of a second conductivity type is provided on a first side of the first semiconductor layer, opposite to a second side facing the substrate. Trenches penetrate the second semiconductor layer. At the first side in the first semiconductor layer, a first semiconductor region of the second conductivity type, with an impurity concentration higher than that of the second semiconductor layer, is provided at a side closer to an active region, contacting the second semiconductor layer. A second semiconductor region of the first conductivity type is provided in the second semiconductor layer, outside and adjacent to one of the trenches that is disposed at a farthest position from the active region.
    Type: Application
    Filed: June 28, 2018
    Publication date: January 31, 2019
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Masanobu IWAYA, Yasuhiko OONISHI, Yusuke KOBAYASHI
  • Patent number: 10103259
    Abstract: An interlayer insulating film is formed on a gate insulating film and a gate electrode, and the interlayer insulating film is opened forming contact holes. Next, the interlayer insulating film and regions exposed by the contact holes are covered by a titanium nitride film, and the titanium nitride film is etched to remain only at portions of the gate insulating film and the interlayer insulating film exposed in the contact holes. The interlayer insulating film and the regions exposed by the contact holes are covered by a nickel film, and after the nickel film directly contacting the interlayer insulating film is removed, the nickel film is heat treated and a nickel silicide layer is formed.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: October 16, 2018
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Masanobu Iwaya, Makoto Utsumi
  • Publication number: 20180269064
    Abstract: In a vertical MOSFET of a trench gate structure, a high-concentration implantation region is provided in a p-type base region formed from a p-type silicon carbide layer formed by epitaxial growth, so as to include a portion in which a channel is formed. The high-concentration implantation region is formed by ion implantation of a p-type impurity into the p-type silicon carbide layer. The high-concentration implantation region is formed by p-type ion implantation and has an impurity concentration profile in which concentration differences in a depth direction form a bell-shaped curve at a peak of impurity concentration that is higher than that of the p-type silicon carbide layer. In the p-type base region, disorder occurs partially in the crystal structure consequent to the ion implantation for forming the high-concentration implantation region.
    Type: Application
    Filed: May 17, 2018
    Publication date: September 20, 2018
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Setsuko WAKIMOTO, Masanobu IWAYA