Patents by Inventor Masao Aoyama

Masao Aoyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8417394
    Abstract: Provided are a substrate processing apparatus, a semiconductor device manufacturing method, and a temperature controlling method, which are adapted to improve equipment operational rate. A calculation parameter computing unit computes a calculation parameter using at least a first calculation parameter correction value determined by a first calculation parameter setting unit based on an accumulated film thickness on a reaction vessel, a second calculation parameter correction value determined by a second calculation parameter setting unit based on an accumulated film thickness on a filler wafer, and a third calculation parameter correction value determined by a third calculation parameter setting unit based on the number of filler wafers.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: April 9, 2013
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Masashi Sugishita, Masaaki Ueno, Tsukasa Iida, Susumu Nishiura, Masao Aoyama, Kenichi Fujimoto, Yoshihiko Nakagawa, Hiroyuki Mitsui
  • Publication number: 20100124726
    Abstract: Provided are a substrate processing apparatus, a semiconductor device manufacturing method, and a temperature controlling method, which are adapted to improve equipment operational rate. A calculation parameter computing unit computes a calculation parameter using at least a first calculation parameter correction value determined by a first calculation parameter setting unit based on an accumulated film thickness on a reaction vessel, a second calculation parameter correction value determined by a second calculation parameter setting unit based on an accumulated film thickness on a filler wafer, and a third calculation parameter correction value determined by a third calculation parameter setting unit based on the number of filler wafers.
    Type: Application
    Filed: October 30, 2009
    Publication date: May 20, 2010
    Inventors: Masashi Sugishita, Masaaki Ueno, Tsukasa Iida, Susumu Nishiura, Masao Aoyama, Kenichi Fujimoto, Yoshihiko Nakagawa, Hiroyuki Mitsui
  • Patent number: 7605405
    Abstract: A semiconductor light emitting device and method of manufacturing the same can provide a light source that has less variation in color and brightness and can reduce radiation of light that is possibly harmful to humans. The device can include a casing that has a first cavity having an oblique surface with a reflective surface formed thereon and a second cavity having an almost vertical side. A reflective frame having an oblique surface with a third reflective surface formed thereon can be formed on the casing. A semiconductor light emitting element can be mounted on the bottom in the first cavity. A first resin composed of a light-transmissive resin can be filled in the first cavity and then cured. Further, a second resin containing a fluorescent material dispersed in a light-transmissive resin can be filled in the second cavity and then cured while the casing is turned upside down to form a high-density fluorescent material layer near the surface of the second resin.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: October 20, 2009
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Mitsunori Harada, Kazuhiko Ueno, Takashi Ebisutani, Masao Aoyama, Kaori Tachibana
  • Publication number: 20050205876
    Abstract: A semiconductor light emitting device and method of manufacturing the same can provide a light source that has less variation in color and brightness and can reduce radiation of light that is possibly harmful to humans. The device can include a casing that has a first cavity having an oblique surface with a reflective surface formed thereon and a second cavity having an almost vertical side. A reflective frame having an oblique surface with a third reflective surface formed thereon can be formed on the casing. A semiconductor light emitting element can be mounted on the bottom in the first cavity. A first resin composed of a light-transmissive resin can be filled in the first cavity and then cured. Further, a second resin containing a fluorescent material dispersed in a light-transmissive resin can be filled in the second cavity and then cured while the casing is turned upside down to form a high-density fluorescent material layer near the surface of the second resin.
    Type: Application
    Filed: March 10, 2005
    Publication date: September 22, 2005
    Inventors: Mitsunori Harada, Kazuhiko Ueno, Takashi Ebisutani, Masao Aoyama, Kaori Tachibana