Patents by Inventor Masayuki Nagamine

Masayuki Nagamine has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050191551
    Abstract: Disclosed is a non-aqueous electrolyte secondary battery having an excellent preservation characteristic at a high temperature and charging/discharging cycle characteristic. A rolled body in which a strip-shape positive electrode and negative electrode are rolled with a separator in-between is provided inside a battery can. The positive electrode contains LixMn2-yMayO4 (where, Ma is at least one element selected from the group consisting of metal elements other than Mn, and B) and LiNi1-zMbzO2 (where, Mb is at least one element selected from the group consisting of metal elements other than Ni, and B). By replacing part of Mn and Ni with other elements, the crystal structure can be stabilized. Thereby, the capacity retention ratio after preservation at a high temperature, and a heavy load discharging power under a high electric potential cutoff can be improved.
    Type: Application
    Filed: April 25, 2005
    Publication date: September 1, 2005
    Inventors: Hisashi Tsujimoto, Yoshikatsu Yamamoto, Junji Kuyama, Masayuki Nagamine, Atsuo Omaru, Hiroaki Tanizaki
  • Patent number: 6884543
    Abstract: Disclosed is a non-aqueous electrolyte secondary battery having an excellent preservation characteristic at a high temperature and charging/discharging cycle characteristic. A rolled body in which a strip-shape positive electrode and negative electrode are rolled with a separator in-between is provided inside a battery can. The positive electrode contains LixMn2-yMayO4 (where, Ma is at least one element selected from the group consisting of metal elements other than Mn, and B) and LiNi1-zMbzO2 (where, Mb is at least one element selected from the group consisting of metal elements other than Ni, and B). By replacing part of Mn and Ni with other elements, the crystal structure can be stabilized. Thereby, the capacity retention ratio after preservation at a high temperature, and a heavy load discharging power under a high electric potential cutoff can be improved.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: April 26, 2005
    Assignee: Sony Corporation
    Inventors: Hisashi Tsujimoto, Yoshikatsu Yamamoto, Junji Kuyama, Masayuki Nagamine, Atsuo Omaru, Hiroaki Tanizaki
  • Publication number: 20050001591
    Abstract: A trade-in battery system for purchasing used secondary batteries and selling the charged used secondary batteries, wherein the trade-in battery system comprises a purchasing step, a pre-storage deterioration inspection step, a charging step, a storage step, a packaging step, and a selling step.
    Type: Application
    Filed: November 3, 2003
    Publication date: January 6, 2005
    Inventors: Masayuki Nagamine, Masayoshi Kanno, Shunichi Fujishima
  • Publication number: 20040224232
    Abstract: A nonaqueous electrolyte secondary battery is provided with a positive electrode including a positive-electrode active material, a negative electrode including a negative-electrode active material, and a nonaqueous electrolyte solution. The negative electrode further includes carbon fibers and carbon flakes. The synergistic effects of the improved retention of the electrolyte solution by the carbon fibers and the improved conductivity between the active material particles by the carbon flakes facilitate doping/undoping of lithium in a high-load current mode and increase the capacity of the battery in the high-load current mode.
    Type: Application
    Filed: June 8, 2004
    Publication date: November 11, 2004
    Inventors: Akira Yamaguchi, Shinji Hatake, Atsuo Omaru, Masayuki Nagamine
  • Patent number: 6806003
    Abstract: A nonaqueous electrolyte secondary battery is provided with a positive electrode including a positive-electrode active material, a negative electrode including a negative-electrode active material, and a nonaqueous electrolyte solution. The negative electrode further includes carbon fibers and carbon flakes. The synergistic effects of the improved retention of the electrolyte solution by the carbon fibers and the improved conductivity between the active material particles by the carbon flakes facilitate doping/undoping of lithium in a high-load current mode and increase the capacity of the battery in the high-load current mode.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: October 19, 2004
    Assignee: Sony Corporation
    Inventors: Akira Yamaguchi, Shinji Hatake, Atsuo Omaru, Masayuki Nagamine
  • Publication number: 20040166414
    Abstract: Carbon fiber having cross sectional shape which satisfies area replenishment rate of 0.8 or more is used as anode material for non-aqueous electrolyte secondary battery. Alternatively, since value of fractal dimension of cross section high order structure of the random radial type carbon fiber can be utilized as material parameter for evaluating the cross sectional structure, carbon fiber in which the value of the fractal dimension is caused to fall within the range from 1.1 to 1.8 and the crystallinity has been controlled such that it falls within reasonable range is used as anode material for non-aqueous electrolyte secondary battery. Further, carbon fiber having cross section high order structure such that the central portion is radial type structure and the surface layer portion is random radial type structure is used as anode material for non-aqueous electrolyte secondary battery. Furthermore, it is also effective to use carbon fiber having notch structure at the cross section.
    Type: Application
    Filed: February 25, 2004
    Publication date: August 26, 2004
    Inventors: Atsuo Omaru, Naoyuki Nakajima, Masayuki Nagamine
  • Patent number: 6764767
    Abstract: A graphite powder suitable for a negative electrode material of a lithium ion secondary battery which assures a high discharging capacity not lower than 320 mAh/g is to be manufactured at a lower cost. Specifically, a graphite powder containing 0.01 to 5.0 wt % of boron and having a looped closure structure at an end of a graphite c-planar layer on the surface of a powder, with the density of the interstitial planar sections between neighboring closure structures being not less than 100/&mgr;m and not more than 1500/&mgr;m, and with d002 being preferably not larger than 3.3650 Å, is manufactured by (1) heat-treating a carbon material pulverized at an elevated speed before or after carbonization for graphization at temperature exceeding 1500° C. or by (2) heat-treating the carbon material pulverized before or after carbonization at a temperature exceeding 1500° C.
    Type: Grant
    Filed: April 16, 1999
    Date of Patent: July 20, 2004
    Assignee: Sony Corporation
    Inventors: Koji Moriguchi, Mitsuhara Yonemura, Kazuhito Kamei, Masaru Abe, Hideya Kaminaka, Noriyuki Negi, Atsuo Omaru, Masayuki Nagamine
  • Publication number: 20040115523
    Abstract: A nonaqueous electrolyte battery has a spirally coiled electrode body (10) including a cathode (11) having a cathode active material and an anode (12) having an anode active material which are coiled through a separator (13) in a battery can (1). As the separator (13), is used a separator having a plurality of laminated microporous films made of polyolefine which have different film layer thickness and average pore size. Specially, the separator (13) has three or more layers of microporous films made of polyolefine laminated. Further, the outermost layer of the separator is made of porous polypropylene and at least one layer of inner layers is made of porous polyethylene. The total of the thickness of layers made of porous polyethylene is located within a range of 40% to 84% as thick as the thickness of the separator. Thus, the temperature of a battery can be controlled, a reliability is enhanced and a productivity and cyclic characteristics are improved.
    Type: Application
    Filed: January 29, 2004
    Publication date: June 17, 2004
    Inventors: Hayato Hommura, Hiroshi Imoto, Atsuo Omaru, Masayuki Nagamine, Akira Yamaguchi
  • Publication number: 20040072077
    Abstract: In a non-aqueous electrolyte secondary battery including anode and cathode consisting of material capable of doping/undoping of lithium, and non-aqueous electrolytic solution in which electrolyte is dissolved in non-aqueous solvent, flaky graphite having high crystallinity and high electron conductivity is added as conductive agent into the anode and the cathode. Further, granulated carbon or carbon black having specific material property is added as conductive agent in addition to the flaky graphite. Thus, non-aqueous electrolyte secondary battery having long cycle life time and high reliability can be obtained.
    Type: Application
    Filed: November 18, 2003
    Publication date: April 15, 2004
    Inventors: Atsuo Omaru, Naoyuki Nakajima, Masayuki Nagamine
  • Patent number: 6716557
    Abstract: Carbon fiber having cross sectional shape which satisfies area replenishment rate of 0.8 or more is used as anode material for non-aqueous electrolyte secondary battery. Alternatively, since value of fractal dimension of cross section high order structure of the random radial type carbon fiber can be utilized as material parameter for evaluating the cross sectional structure, carbon fiber in which the value of the fractal dimension is caused to fall within the range from 1.1 to 1.8 and the crystallinity has been controlled such that it falls within reasonable range is used as anode material for non-aqueous electrolyte secondary battery. Further, carbon fiber having cross section high order structure such that the central portion is radial type structure and the surface layer portion is random radial type structure is used as anode material for non-aqueous electrolyte secondary battery. Furthermore, it is also effective to use carbon fiber having notch structure at the cross section.
    Type: Grant
    Filed: May 16, 2001
    Date of Patent: April 6, 2004
    Assignee: Sony Corporation
    Inventors: Atsuo Omaru, Naoyuki Nakajima, Masayuki Nagamine
  • Patent number: 6686094
    Abstract: In a non-aqueous electrolyte secondary battery including an anode and a cathode consisting of material capable of doping/undoping of lithium, and non-aqueous electrolytic solution in which electrolyte is dissolved in a non-aqueous solvent, flaky graphite having high crystallinity and high electron conductivity is added as conductive agent into the anode and the cathode. Further, granulated carbon and carbon black having specific material property is added as conductive agent in addition to the flaky graphite. Thus, non-aqueous electrolyte secondary battery having long cycle life time and high reliability can be obtained.
    Type: Grant
    Filed: July 24, 1998
    Date of Patent: February 3, 2004
    Assignee: Sony Corporation
    Inventors: Atsuo Omaru, Naoyuki Nakajima, Masayuki Nagamine
  • Patent number: 6623888
    Abstract: A non-aqueous lithium salt secondary battery includes an anode consisting of carbon material in which doping/undoping of lithium is permitted, a cathode, and a non-aqueous electrolyte in which lithium salt is dissolved in a non-aqueous solvent. The carbon material constituting the anode is crushed graphite material having true density of 2.1 g/cm3 or more and bulk density of 0.4 g/cm3 or more. It is necessary that the graphite material is powder having in which an average value of shape parameters indicated by the following expression is 125 or less: x=(L/T)·(W/T) x: shape parameter T: thickness of the portion thinnest in thickness of the powder L: length in a length axis direction of the powder W: length in a direction perpendicular to the length axis of the powder.
    Type: Grant
    Filed: April 7, 1995
    Date of Patent: September 23, 2003
    Assignee: Sony Corporation
    Inventors: Atsuo Omaru, Naoyuki Nakajima, Masayuki Nagamine
  • Patent number: 6623892
    Abstract: A nonaqueous electrolyte battery having improved characteristics under a heavy load environment and incorporating nonaqueous electrolytic solution which contains vinylene carbonate in a proper quantity to improve conductivity of the nonaqueous electrolytic solution so that doping/dedoping of lithium ions is performed smoothly and, therefore, the internal resistance is decreased. Hence it follows that the initial capacity of the battery is enlarged and satisfactory heavy load characteristics are realized.
    Type: Grant
    Filed: June 16, 2000
    Date of Patent: September 23, 2003
    Assignee: Sony Corporation
    Inventors: Akira Yamaguchi, Hidetoshi Ito, Atuo Omaru, Masayuki Nagamine
  • Publication number: 20030118896
    Abstract: A non-aqueous electrolyte secondary cell which achieves satisfactory low temperature characteristics and high safety against overcharging in combination. The cell includes a lithium-containing cathode, an anode capable of doping and undoping lithium, a non-aqueous electrolyte and a separator. The separator is made up by a plurality of layers of a porous material or materials presenting micro-sized pores. The layers of the porous material or materials is formed of micro-porous separator materials representing different combinations of the porosity, melting point or material/compositions.
    Type: Application
    Filed: April 19, 2002
    Publication date: June 26, 2003
    Inventors: Akira Yamaguchi, Atsuo Omaru, Masayuki Nagamine
  • Patent number: 6534217
    Abstract: Disclosed is a positive electrode material having improved charging/discharging cycle characteristic, shelf stability, and discharge load characteristic, and a secondary battery using the material. A rolled electrode body obtained by rolling strip-shaped positive and negative electrodes with a separator inbetween is provided on the inside of a battery can. The separator is impregnated with an electrolytic solution. The positive electrode contains a positive electrode material in which a coating portion is provided on the surface of a center portion made of a lithium composite oxide such as LiMn2O4. The coating portion is made of a conductive oxide such as ITO (indium tin oxide) or SnO2. The quantity of the coating portion is 0.001 mol to 0.1 mol per 1 mol of the center portion.
    Type: Grant
    Filed: January 16, 2001
    Date of Patent: March 18, 2003
    Assignee: Sony Corporation
    Inventors: Keizou Koga, Yosuke Hosoya, Junji Kuyama, Masayuki Nagamine
  • Patent number: 6458490
    Abstract: A nonaqueous electrolyte secondary battery incorporating a positive electrode containing a positive-electrode active material and a negative electrode containing a negative-electrode active material which are laminated through a separator and containing nonaqueous electrolytic solution enclosed therein, the nonaqueous electrolyte secondary battery having a spinel manganese composite metal oxide serving as the positive-electrode active material, wherein the separator is constituted by paper having a thickness of 15 &mgr;m to 60 &mgr;m and permeability of 1 second/100 cc to 10 seconds/100 cc.
    Type: Grant
    Filed: June 21, 2000
    Date of Patent: October 1, 2002
    Assignee: Sony Corporation
    Inventors: Hayato Hommura, Hiroshi Imoto, Masayuki Nagamine
  • Patent number: 6440609
    Abstract: The present invention improves cell characteristics at a low temperature. The negative electrode contains fiber carbon, which enables smooth doping and dedoping of lithium ions at a low temperature. Accordingly, the internal resistance value at a low temperature is reduced and the cell capacity value is increased.
    Type: Grant
    Filed: June 28, 2000
    Date of Patent: August 27, 2002
    Assignee: Sony Corporation
    Inventors: Akira Yamaguchi, Atsuo Omaru, Masayuki Nagamine
  • Publication number: 20020037458
    Abstract: A nonaqueous electrolyte secondary battery comprises a cathode having a cathode active material capable of electrochemically doping/dedoping lithium, an anode having an anode active material capable of electrochemically doping/dedoping lithium and a nonaqueous electrolyte interposed between the cathode and the anode. The nonaqueous electrolyte includes at least one or more kinds of vinylene carbonate, methoxybenzene compounds or antioxidants. The nonaqueous electrolyte secondary battery has a good cyclic characteristic under any environment of low temperature, ambient temperature and high temperature.
    Type: Application
    Filed: May 25, 2001
    Publication date: March 28, 2002
    Inventors: Akira Yamaguchi, Atsuo Omaru, Masayuki Nagamine, Minoru Hasegawa
  • Publication number: 20020012842
    Abstract: Disclosed is a non-aqueous electrolyte secondary battery having an excellent preservation characteristic at a high temperature and charging/discharging cycle characteristic.
    Type: Application
    Filed: March 30, 2001
    Publication date: January 31, 2002
    Inventors: Hisashi Tsujimoto, Yoshikatsu Yamamoto, Junji Kuyama, Masayuki Nagamine, Atsuo Omaru, Hiroaki Tanizaki
  • Patent number: 6335122
    Abstract: A carbonaceous electrode having improved capacities for doping and dedoping of a cell active substance, such as lithium, and suitable for a non-aqueous solvent secondary battery, is constituted by a carbonaceous material having a true density as measured by a butanol substitution method of at most 1.46 g/cm3, a true density as measured by a helium substitution method of at least 1.7 g/cm3, a hydrogen-to-carbon atomic ratio H/C of at most 0.15 as measured according to elementary analysis, a BET specific surface area of at most 50 m2/g as measured by nitrogen adsorption BET method, and a carbon dioxide adsorption capacity of at least 10 ml/g. The carbonaceous material is advantageously produced by carbonizing an organic material originated from bamboo genera of family Gramineae, particularly genus Pleioblastus or Bambusa, at 1000-1400° C. under a reduced pressure or under a flowing inert gas stream to provide an appropriate porous structure.
    Type: Grant
    Filed: December 16, 1999
    Date of Patent: January 1, 2002
    Assignees: Sony Corporation, Kureha Kagaku Kogyo Kabushiki Kaisha
    Inventors: Shinichiro Yamada, Hiroshi Imoto, Hideto Azuma, Tadashi Senoo, Koji Sekai, Masayuki Nagamine, Atsuo Omaru, Naohiro Sonobe, Jiro Masuko, Minoru Ishikawa