Patents by Inventor Matthew Blieske

Matthew Blieske has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9260966
    Abstract: Systems, methods and devices for optimizing heat transfer within a device or system used to compress and/or expand a gas, such as air, are described herein. In some embodiments, a compressed air device and/or system can include an actuator such as a hydraulic actuator that can be used to compress a gas within a pressure vessel. An actuator can be actuated to move a liquid into a pressure vessel such that the liquid compresses gas within the pressure vessel. In such a compressor/expander device or system, during the compression and/or expansion process, heat can be transferred to the liquid used to compress the air. The compressor/expander device or system can include a liquid purge system that can be used to remove at least a portion of the liquid to which the heat energy has been transferred such that the liquid can be cooled and then recycled within the system.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: February 16, 2016
    Assignee: General Compression, Inc.
    Inventors: Eric D. Ingersoll, Justin A. Aborn, Matthew Blieske
  • Publication number: 20150308212
    Abstract: This disclosure includes systems and methods for actuation of subsea hydraulically actuated devices. Some systems use or include one or more subsea reservoirs, each having a body defining an interior volume configured to contain a sub-ambient internal pressure, the body defining an outlet in fluid communication with the interior volume, and a hydraulic power delivery system including one or more subsea valves configured to selectively allow fluid communication between the outlet of at least one of the reservoir(s) and a first port of the hydraulically actuated device. In some systems, the hydraulic power delivery system includes a rigid sliding member configured to unseal a selectively sealed outlet of at least one of the reservoir(s). In some systems, the subsea valve(s) are configured to alternatively allow fluid communication between the outlet of the at least one of the reservoir(s) and the first or a second port of the hydraulically actuated device.
    Type: Application
    Filed: April 1, 2015
    Publication date: October 29, 2015
    Inventors: Jeremy MAUNUS, Matthew BLIESKE, Guy Robert BABBITT
  • Patent number: 9109511
    Abstract: Systems and methods for efficiently operating a hydraulically actuated device/system are described herein. For example, systems and methods for efficiently operating a gas compression and expansion energy storage system are disclosed herein. Systems and methods are provided for controlling and operating the hydraulic actuators used within a hydraulically actuated device/system, such as, for example, a gas compression and/or expansion energy system, within a desired efficiency range of the hydraulic pump(s)/motor(s) used to supply or receive pressurized hydraulic fluid to or from the hydraulic actuators. In such a system, a variety of different operating regimes can be used depending on the desired output gas pressure and the desired stored pressure of the compressed gas. Hydraulic cylinders used to drive working pistons within the system can be selectively actuated to achieve varying force outputs to incrementally increase the gas pressure within the system for a given cycle.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: August 18, 2015
    Assignee: General Compression, Inc.
    Inventors: Eric D. Ingersoll, Justin A. Aborn, Matthew Blieske
  • Patent number: 9109512
    Abstract: Systems, devices and methods for the compression, expansion, and/or storage of a gas are described herein. An apparatus suitable for use in a compressed gas-based energy storage and recovery system includes a pneumatic cylinder having a working piston disposed therein for reciprocating movement in the pneumatic cylinder, a hydraulic actuator coupled to the working piston, and a hydraulic controller fluidically coupleable to the hydraulic actuator. The apparatus is fluidically coupleable to a compressed gas storage chamber which includes a first storage chamber fluidically coupleable to the pneumatic chamber, and a second storage chamber is fluidically coupleable to the first storage chamber. The first storage chamber is disposed at a first elevation and is configured to contain a liquid and a gas. The second storage chamber is disposed at a second elevation greater than the first elevation, and is configured to contain a volume of liquid.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: August 18, 2015
    Assignee: General Compression, Inc.
    Inventors: Eric D. Ingersoll, Justin A. Aborn, Matthew Blieske, David Marcus, Kyle Brookshire
  • Patent number: 9051834
    Abstract: Systems, methods and devices for optimizing heat transfer within a device or system used to compress and/or expand a gas, such as air, are described herein. For example, systems, methods and devices for optimizing the heat transfer within an air compression and expansion energy storage system are described herein. A compressor and/or expander device can include one or more of various embodiments of a heat transfer element that can be disposed within an interior of a cylinder or pressure vessel used in the compression and/or expansion of a gas, such as air. Such devices can include hydraulic and/or pneumatic actuators to move a fluid (e.g., liquid or gas) within the cylinder or pressure vessel. The heat transfer element can be used to remove heat energy generated during a compression and/or expansion process.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: June 9, 2015
    Assignee: General Compression, Inc.
    Inventors: Eric D. Ingersoll, Justin A. Aborn, Matthew Blieske, Iain Ridley
  • Patent number: 8997475
    Abstract: An apparatus can include a pressure vessel that defines an interior region that can contain a liquid and/or a gas. A piston is movably disposed within the interior region of the pressure vessel. A divider is fixedly disposed within the interior region of the pressure vessel and divides the interior region into a first interior region on a first side of the divider and a second interior region on a second, opposite side of the divider. The piston is movable between a first position in which fluid having a first pressure is disposed within the first interior region and the first interior region has a volume less than a volume of the second interior region, and a second position in which fluid having a second pressure is disposed within the second interior region and the second interior region has a volume less than a volume of the first interior region.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: April 7, 2015
    Assignee: General Compression, Inc.
    Inventors: Eric D. Ingersoll, Justin A. Aborn, Luc Aalmans, Matthew Blieske
  • Patent number: 8967199
    Abstract: A rotary valve adapted for use in utility scale fluidic systems improves over conventional valving schemes by affording reductions in weight, pressure drop, cost, and actuation time, as well as providing improvements in decompression performance, higher pressure capability, and longer operational life. One embodiment of a three way valve assembly utilizes electric actuation to adjust decompression in real time and facilitate port shaping. The valve assembly utilizes a pressure balanced rotor and seals to reduce actuation and bearing loads, as well as increase seal life.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: March 3, 2015
    Assignee: General Compression, Inc.
    Inventors: Matthew Blieske, Simon Christopher Helmore
  • Publication number: 20140250880
    Abstract: Systems, methods and devices for optimizing heat transfer within a device or system used to compress and/or expand a gas, such as air, are described herein. In some embodiments, a compressed air device and/or system can include an actuator such as a hydraulic actuator that can be used to compress a gas within a pressure vessel. An actuator can be actuated to move a liquid into a pressure vessel such that the liquid compresses gas within the pressure vessel. In such a compressor/expander device or system, during the compression and/or expansion process, heat can be transferred to the liquid used to compress the air. The compressor/expander device or system can include a liquid purge system that can be used to remove at least a portion of the liquid to which the heat energy has been transferred such that the liquid can be cooled and then recycled within the system.
    Type: Application
    Filed: October 7, 2013
    Publication date: September 11, 2014
    Applicant: General Compression, Inc.
    Inventors: Eric D. Ingersoll, Justin A. Aborn, Matthew Blieske
  • Publication number: 20140238500
    Abstract: An apparatus can include a piston movably disposed within a pressure vessel and defines a first interior region and a second interior region. The piston has a first position in which the first interior contains a gas having a first pressure and has a volume greater than the second interior region, and a second position in which the second interior region contains a gas having a second pressure and has a volume greater than the first interior region. A seal member is attached to the piston and to the pressure vessel. The seal member has a first configuration in which at least a portion of the seal member is disposed at a first position when the piston is in its first position, and a second configuration in which the portion of the seal member is disposed at a second position when the piston is in its second position.
    Type: Application
    Filed: September 27, 2013
    Publication date: August 28, 2014
    Applicant: General Compression, Inc.
    Inventors: Eric D. Ingersoll, Justin A. Aborn, Matthew Blieske, Istvan Hauer
  • Publication number: 20140190152
    Abstract: Systems, methods and devices for optimizing bi-directional piston movement within a device or system used to compress and/or expand a gas, such as air, are described herein. In some embodiments, a compressed air device and/or system can include a first pneumatic cylinder, a second pneumatic cylinder, a hydraulic actuator, and a hydraulic controller. The first pneumatic cylinder has a first working piston disposed therein for reciprocating movement in the first pneumatic cylinder and the hydraulic actuator is coupled to the first working piston. The second pneumatic cylinder has a second working piston disposed therein for reciprocating movement in the second pneumatic cylinder. The hydraulic controller is fluidically coupleable to the hydraulic actuator and is operable in a compression mode and an expansion mode.
    Type: Application
    Filed: August 8, 2013
    Publication date: July 10, 2014
    Applicant: General Compression, Inc.
    Inventors: Eric D. Ingersoll, Justin A. Aborn, Matthew Blieske
  • Publication number: 20140083510
    Abstract: A rotary valve adapted for use in utility scale fluidic systems improves over conventional valving schemes by affording reductions in weight, pressure drop, cost, and actuation time, as well as providing improvements in decompression performance, higher pressure capability, and longer operational life. One embodiment of a three way valve assembly utilizes electric actuation to adjust decompression in real time and facilitate port shaping. The valve assembly utilizes a pressure balanced rotor and seals to reduce actuation and bearing loads, as well as increase seal life.
    Type: Application
    Filed: September 25, 2012
    Publication date: March 27, 2014
    Applicant: GENERAL COMPRESSION, INC.
    Inventors: Matthew Blieske, Simon Christopher Helmore
  • Patent number: 8572959
    Abstract: Systems, methods and devices for optimizing heat transfer within a device or system used to compress and/or expand a gas, such as air, are described herein. In some embodiments, a compressed air device and/or system can include an actuator such as a hydraulic actuator that can be used to compress a gas within a pressure vessel. An actuator can be actuated to move a liquid into a pressure vessel such that the liquid compresses gas within the pressure vessel. In such a compressor/expander device or system, during the compression and/or expansion process, heat can be transferred to the liquid used to compress the air. The compressor/expander device or system can include a liquid purge system that can be used to remove at least a portion of the liquid to which the heat energy has been transferred such that the liquid can be cooled and then recycled within the system.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: November 5, 2013
    Assignee: General Compression, Inc.
    Inventors: Eric D. Ingersoll, Justin A. Aborn, Matthew Blieske
  • Patent number: 8567303
    Abstract: An apparatus can include a piston movably disposed within a pressure vessel and defines a first interior region and a second interior region. The piston has a first position in which the first interior contains a gas having a first pressure and has a volume greater than the second interior region, and a second position in which the second interior region contains a gas having a second pressure and has a volume greater than the first interior region. A seal member is attached to the piston and to the pressure vessel. The seal member has a first configuration in which at least a portion of the seal member is disposed at a first position when the piston is in its first position, and a second configuration in which the portion of the seal member is disposed at a second position when the piston is in its second position.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: October 29, 2013
    Assignee: General Compression, Inc.
    Inventors: Eric D. Ingersoll, Justin A. Aborn, Matthew Blieske, Istvan Hauer
  • Patent number: 8522538
    Abstract: Systems, methods and devices for optimizing bi-directional piston movement within a device or system used to compress and/or expand a gas, such as air, are described herein. In some embodiments, a compressed air device and/or system can include a first pneumatic cylinder, a second pneumatic cylinder, a hydraulic actuator, and a hydraulic controller. The first pneumatic cylinder has a first working piston disposed therein for reciprocating movement in the first pneumatic cylinder and the hydraulic actuator is coupled to the first working piston. The second pneumatic cylinder has a second working piston disposed therein for reciprocating movement in the second pneumatic cylinder. The hydraulic controller is fluidically coupleable to the hydraulic actuator and is operable in a compression mode and an expansion mode.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: September 3, 2013
    Assignee: General Compression, Inc.
    Inventors: Eric D. Ingersoll, Justin A. Aborn, Matthew Blieske
  • Patent number: 8454321
    Abstract: Systems, methods and devices for optimizing heat transfer within a device or system used to compress and/or expand a gas, such as air, are described herein. For example, systems, methods and devices for optimizing the heat transfer within an air compression and expansion energy storage system are described herein. A compressor and/or expander device can include one or more of various embodiments of a heat transfer element that can be disposed within an interior of a cylinder or pressure vessel used in the compression and/or expansion of a gas, such as air. Such devices can include hydraulic and/or pneumatic actuators to move a fluid (e.g., liquid or gas) within the cylinder or pressure vessel. The heat transfer element can be used to remove heat energy generated during a compression and/or expansion process.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: June 4, 2013
    Assignee: General Compression, Inc.
    Inventors: Eric D. Ingersoll, Justin A. Aborn, Matthew Blieske, Iain Ridley
  • Patent number: 8387375
    Abstract: Systems, methods and devices for optimizing thermal efficiency within a gas compression system are described herein. In some embodiments, a device can include a first hydraulic cylinder, a second hydraulic cylinder, and a hydraulic actuator. The first hydraulic cylinder has a first working piston disposed therein for reciprocating movement in the first hydraulic cylinder and which divides the first hydraulic cylinder into a first hydraulic chamber and a second hydraulic chamber. The second hydraulic cylinder has a second working piston disposed therein for reciprocating movement in the second hydraulic cylinder and which divides the second hydraulic cylinder into a third hydraulic chamber and a fourth hydraulic chamber. The hydraulic actuator can be coupled to the first or second working piston, and is operable to move the first and second working pistons in a first direction and a second direction such that volume in the hydraulic chambers are reduced accordingly.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: March 5, 2013
    Assignee: General Compression, Inc.
    Inventor: Matthew Blieske
  • Patent number: 8272212
    Abstract: Systems, methods and devices for optimizing thermal efficiency within a gas compression system are described herein. In some embodiments, a device can include a first hydraulic cylinder, a second hydraulic cylinder, and a hydraulic actuator. The first hydraulic cylinder has a first working piston disposed therein for reciprocating movement in the first hydraulic cylinder and which divides the first hydraulic cylinder into a first hydraulic chamber and a second hydraulic chamber. The second hydraulic cylinder has a second working piston disposed therein for reciprocating movement in the second hydraulic cylinder and which divides the second hydraulic cylinder into a third hydraulic chamber and a fourth hydraulic chamber. The hydraulic actuator can be coupled to the first or second working piston, and is operable to move the first and second working pistons in a first direction and a second direction such that volume in the hydraulic chambers are reduced accordingly.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: September 25, 2012
    Assignee: General Compression, Inc.
    Inventor: Matthew Blieske
  • Publication number: 20120174569
    Abstract: Systems, devices and methods for the compression, expansion, and/or storage of a gas are described herein. An apparatus suitable for use in a compressed gas-based energy storage and recovery system includes a pneumatic cylinder having a working piston disposed therein for reciprocating movement in the pneumatic cylinder, a hydraulic actuator coupled to the working piston, and a hydraulic controller fluidically coupleable to the hydraulic actuator. The apparatus is fluidically coupleable to a compressed gas storage chamber which includes a first storage chamber fluidically coupleable to the pneumatic chamber, and a second storage chamber is fluidically coupleable to the first storage chamber. The first storage chamber is disposed at a first elevation and is configured to contain a liquid and a gas. The second storage chamber is disposed at a second elevation greater than the first elevation, and is configured to contain a volume of liquid.
    Type: Application
    Filed: January 13, 2012
    Publication date: July 12, 2012
    Applicant: GENERAL COMPRESSION, INC.
    Inventors: Eric D. Ingersoll, Justin A. Aborn, Matthew Blieske, David Marcus, Kyle Brookshire
  • Publication number: 20120102954
    Abstract: Systems and methods are described herein to operate an air compression and/or expansion system in its most efficient regime, at a desired efficiency, and/or achieve a desired pressure ratio independent of discharge temperature, with little to no impact on thermal efficiency. For example, systems and methods are provided for controlling and operating hydraulic pumps/motors used within a hydraulically actuated device/system, such as, for example, a gas compression and/or expansion energy system, in its most efficient regime, continuously, substantially continuously, intermittently, or varied throughout an operating cycle or stroke of the system to achieve any desired pressure and temperature profile. Such systems and methods can achieve any desired pressure ratio independent of input or discharge temperature, and can also achieve any desired discharge temperature independent of pressure ratio, without altering any of the structural components of the device or system.
    Type: Application
    Filed: January 13, 2012
    Publication date: May 3, 2012
    Applicant: GENERAL COMPRESSION, INC.
    Inventors: Eric D. Ingersoll, Justin A. Aborn, Matthew Blieske
  • Publication number: 20120102935
    Abstract: Systems, methods and devices for optimizing heat transfer within a device or system used to compress and/or expand a gas, such as air, are described herein. In some embodiments, a compressed air device and/or system can include an actuator such as a hydraulic actuator that can be used to compress a gas within a pressure vessel. An actuator can be actuated to move a liquid into a pressure vessel such that the liquid compresses gas within the pressure vessel. In such a compressor/expander device or system, during the compression and/or expansion process, heat can be transferred to the liquid used to compress the air. The compressor/expander device or system can include a liquid purge system that can be used to remove at least a portion of the liquid to which the heat energy has been transferred such that the liquid can be cooled and then recycled within the system.
    Type: Application
    Filed: January 13, 2012
    Publication date: May 3, 2012
    Applicant: General Compression, Inc.
    Inventors: Eric D. Ingersoll, Justin A. Aborn, Matthew Blieske