Patents by Inventor Matthew Brian Dudon

Matthew Brian Dudon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11828264
    Abstract: A rotor blade includes a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint. Each of the first and second blade segments has at least one shell member defining an airfoil surface. The first blade segment includes a beam structure having a receiving end with at least one span-wise extending pin extending therefrom. The second blade segment includes a receiving section that receives the beam structure. The receiving section includes a chord-wise member having a pin joint slot defined therethrough. The pin joint slot receives the span-wise extending pin at the receiving end of the beam structure so as to secure the first and second blade segments together. Moreover, the chord-wise member, the pin joint slot, and/or the span-wise extending pin includes at least one compliant structure formed of a compliant material that allows a deformation thereof to follow a shear deformation of the rotor blade.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: November 28, 2023
    Assignee: General Electric Company
    Inventors: Thomas Merzhaeuser, Andrew Mitchell Rodwell, Mohammad Salah Attia, Matthew Brian Dudon
  • Publication number: 20230323864
    Abstract: A method for repairing or improving a lightning protection system of a rotor blade of a wind turbine having a blade root and a blade tip includes identifying a repair or improvement location in the lightning protection system of the rotor blade. The method includes removing one or more layers of material at the repair or improvement location that form part of a shell of the rotor blade so as to expose existing conductive material in the rotor blade. The method also includes placing a conductive layer of material atop the repair or improvement location such that a root-side edge of the conductive layer overlaps the existing conductive material. Moreover, the method includes electrically connecting the root-side edge of the conductive layer with the existing conductive material and a tip-side edge of the conductive layer of material with the blade tip. The method further includes covering the conductive layer with an outer covering.
    Type: Application
    Filed: August 27, 2021
    Publication date: October 12, 2023
    Inventors: James Robert Tobin, Steven Haines Olson, Lars Bo Hansen, Matthew Brian Dudon
  • Patent number: 11536246
    Abstract: A span-wise extending pin for joining blade segments of a rotor blade includes a distal portion having a length defined by a first end and an opposing, second end. The distal portion has a conical shape extending for at least a portion of the length thereof for providing ease of insertion of the pin into a pin joint slot of one of the first and second blade segments. The pin also includes a pin portion adjacent to the distal portion. The pin portion includes a first section and a second section. The second section is configured for securing within a beam structure of the first blade segment. The first section extends span-wise from a receiving end of the beam structure. The pin also includes a proximal portion having at least a rod member that extends span-wise through and secures together the pin portion and the distal portion.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: December 27, 2022
    Assignee: General Electric Company
    Inventors: Scott Jacob Huth, Matthew Brian Dudon, Jon Stuart Wright
  • Publication number: 20210396207
    Abstract: A rotor blade includes a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint. Each of the first and second blade segments has at least one shell member defining an airfoil surface. The first blade segment includes a beam structure having a receiving end with at least one span-wise extending pin extending therefrom. The second blade segment includes a receiving section that receives the beam structure. The receiving section includes a chord-wise member having a pin joint slot defined therethrough. The pin joint slot receives the span-wise extending pin at the receiving end of the beam structure so as to secure the first and second blade segments together. Moreover, the chord-wise member, the pin joint slot, and/or the span-wise extending pin includes at least one compliant structure formed of a compliant material that allows a deformation thereof to follow a shear deformation of the rotor blade.
    Type: Application
    Filed: November 1, 2018
    Publication date: December 23, 2021
    Inventors: Thomas Merzhaeuser, Andrew Mitchell Rodwell, Mohammad Salah Attia, Matthew Brian Dudon
  • Publication number: 20210381487
    Abstract: A span-wise extending pin for joining blade segments of a rotor blade includes a distal portion having a length defined by a first end and an opposing, second end. The distal portion has a conical shape extending for at least a portion of the length thereof for providing ease of insertion of the pin into a pin joint slot of one of the first and second blade segments. The pin also includes a pin portion adjacent to the distal portion. The pin portion includes a first section and a second section. The second section is configured for securing within a beam structure of the first blade segment. The first section extends span-wise from a receiving end of the beam structure. The pin also includes a proximal portion having at least a rod member that extends span-wise through and secures together the pin portion and the distal portion.
    Type: Application
    Filed: November 1, 2018
    Publication date: December 9, 2021
    Inventors: Scott Jacob Huth, Matthew Brian Dudon, Jon Stuart Wright