Patents by Inventor Matthew D. CHRISTIANSON

Matthew D. CHRISTIANSON has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200277411
    Abstract: Olefin polymerization catalyst systems are provided that include a procatalyst component having a metal-ligand complex of Formula (I): [formula] (I) where each X is a neutral, monoanionic, or dianionic, monodentate or polydentate ligand such that the complex of Formula (I) is neutral; each R1 and R10 is a (C6-C40)aryl, substituted (C6-C40)aryl, (C3-C40)heteroaryl, or substituted (C3-C40)heteroaryl; each R2, R3, R4, R7, R8, and R9 is a hydrogen; (C1-C40)hydrocarbyl; substituted (C1-C40)hydrocarbyl; (C1-C40)heterohydrocarbyl; substituted (C1-C40)heterohydrocarbyl; halogen; or nitro (NO2) group; and each R5 and R6 is a (C1-C)alkyl; substituted (C1-C40)alkyl; or [(Si)1—(C+Si)40] substituted organosilyl. Additionally, olefin-based polymers and processes for polymerizing one or more olefin-based polymers in the presence of the olefin polymerization catalyst systems are also provided.
    Type: Application
    Filed: March 30, 2017
    Publication date: September 3, 2020
    Applicant: Dow Global Technologies LLC
    Inventors: Brad C. Bailey, Matthew D. Christianson, Anna V. Davis, Jasson T. Patton, Tomas D. Paine
  • Publication number: 20200131283
    Abstract: The present disclosure relates to a catalyst system for use in forming a multi-block copolymer, said copolymer containing therein two or more segments or blocks differing in chemical or physical properties, a polymerization process using the same, and the resulting polymers, wherein the composition comprises the admixture or reaction product resulting from combining: (A) a first olefin polymerization procatalyst, (B) a second olefin polymerization procatalyst capable of preparing polymers differing in chemical or physical properties from the polymer prepared by procatalyst (A) under equivalent polymerization conditions, (C) an activator, and (D) a chain shuttling agent.
    Type: Application
    Filed: March 14, 2018
    Publication date: April 30, 2020
    Inventors: Andrew Young, Hien Q. Do, Brad C. Bailey, Matthew D. Christianson, Jeffrey C. Munro, Edmund M. Camahan
  • Publication number: 20200071428
    Abstract: The present disclosure relates to an olefin polymerization catalyst system for use in forming a multi-block copolymer, said copolymer containing therein two or more segments or blocks differing in chemical or physical properties, a polymerization process using the same, and the resulting polymers, wherein the composition comprises the admixture or reaction product resulting from combining: (A) a first olefin polymerization procatalyst, (B) a second olefin polymerization procatalyst capable of preparing polymers differing in chemical or physical properties from the polymer prepared by procatalyst (A) under equivalent polymerization conditions, and (C) a chain shuttling agent.
    Type: Application
    Filed: March 15, 2018
    Publication date: March 5, 2020
    Inventors: Jasson Patton, Todd D. Senecal, Daniel J. Arriola, Matthew D. Christianson, Gordon R. Roof, Jerzy Klosin, David D. Devore, Anna V. Davis
  • Publication number: 20200031960
    Abstract: Embodiments are directed to phosphaguanidine metal complexes of formula I and using those complexes in ?-olefin polymerization systems.
    Type: Application
    Filed: September 29, 2017
    Publication date: January 30, 2020
    Applicant: Dow Global Technologies LLC
    Inventors: Andrew M. Camelio, Matthew D. Christianson, Robert DJ Froese
  • Publication number: 20200024377
    Abstract: Embodiments are directed to monophosphaguanidine ligands and the bis ligated metal-complexes formed therefrom, wherein the metal-ligand complexes are polymerization catalysts comprising the following structure (I).
    Type: Application
    Filed: September 29, 2017
    Publication date: January 23, 2020
    Applicant: Dow Global Technologies LLC
    Inventors: Andrew M. Camelio, Arkady L. Krasovskiy, Matthew D. Christianson, Amaruka Hazari, Heather Spinney, Robert DJ Froese
  • Publication number: 20190345271
    Abstract: Embodiments are directed to bis- and poly-phosphaguanidine compounds, and the metal-ligand complexes formed therefrom, wherein the metal complexes can be used as procatalysts in polyolefin polymerization. Formulas (I) (II) and (III).
    Type: Application
    Filed: September 28, 2017
    Publication date: November 14, 2019
    Applicant: Dow Global Technologies LLC
    Inventors: Andrew M. Camelio, Arkady L. Krasovskiy, Matthew D. Christianson, Robert DJ Froese
  • Publication number: 20160311785
    Abstract: The disclosure provides modular triazine-based unimolecular initiator compounds useful in controlled radical polymerizations of vinyl-containing monomers.
    Type: Application
    Filed: October 20, 2014
    Publication date: October 27, 2016
    Inventors: Jetsuda AREEPHONG, Nicolas TREAT, John W. KRAMER, Matthew D. CHRISTIANSON, Hazel A. COLLINS
  • Patent number: 9459533
    Abstract: A copolymer comprises the polymerized product of a dissolution-rate controlling monomer having the formula (I), an acyclic vinyl ether monomer of the formula (II), and a cyclic vinyl ether monomer of the formula (III): wherein Ra, Rb, Rc, L, X, and Z1 are defined herein. A photoresist composition comprising the copolymer is described, as is an article coated with the photoresist composition, and a method of forming an electronic device using the photoresist composition.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: October 4, 2016
    Assignee: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Matthew D. Christianson, Matthew M. Meyer, Owendi Ongayi
  • Patent number: 9422375
    Abstract: Provided is a non-cyclopentadienyl-based chromium-ligand complex, preferably a chromium-ligand complex of formula (J): LCr(RA)m(D)k (J), wherein L is a non-Cp monoanionic ligand; Cr (chromium) is in a formal oxidation state of +3 or +2; when Cr formally is Cr+3, either m is 1 and RA is hydrocarbylene (a hydrocarbylene chromium-ligand complex of formula (J)) or m is 2 and each RA independently is hydrocarbyl (a dihydrocarbyl chromium-ligand complex of formula (J)), wherein each hydrocarbyl or hydrocarbylene of RA independently is unsubstituted or substituted by from 1 to 5 RAS; each RAS independently is a neutral aprotic heteroalkyl, neutral aprotic heterocycloalkyl, neutral aprotic heteroaryl, or neutral aprotic aryl; when Cr formally is Cr+2, m is 1 and RA is hydrocarbyl (a hydrocarbyl chromium-ligand complex of formula (J)); k is an integer of 0 or 1; D is absent when k is 0 or D is a neutral ligand when k is 1; wherein the chromium-ligand complex of formula (J) is overall neutral and lacks a cyclopentadien
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: August 23, 2016
    Inventors: Matthew D. Christianson, Timothy S. De Vries, Robert D J Froese, Matthias S. Ober, Jasson T. Patton, Duane R. Romer, Gordon R. Roof, Lixin Sun, Endre Szuromi, Curt N. Theriault, Dean M. Welsh, Timothy T. Wenzel, Paul H. Moran
  • Patent number: 9296836
    Abstract: Provided is a non-cyclopentadienyl-based chromium-ligand complex, preferably a chromium-ligand complex of formula (J): LCr(RA)m(D)k (J), wherein L is a non-Cp monoanionic ligand; Cr (chromium) is in a formal oxidation state of +3 or +2; when Cr formally is Cr+3, either m is 1 and RA is hydrocarbylene (a hydrocarbylene chromium-ligand complex of formula (J)) or m is 2 and each RA independently is hydrocarbyl (a dihydrocarbyl chromium-ligand complex of formula (J)), wherein each hydrocarbyl or hydrocarbylene of RA independently is unsubstituted or substituted by from 1 to 5 RAS; each RAS independently is a neutral aprotic heteroalkyl, neutral aprotic heterocycloalkyl, neutral aprotic heteroaryl, or neutral aprotic aryl; when Cr formally is Cr+2, m is 1 and RA is hydrocarbyl (a hydrocarbyl chromium-ligand complex of formula (J)); k is an integer of 0 or 1; D is absent when k is 0 or D is a neutral ligand when k is 1; wherein the chromium-ligand complex of formula (J) is overall neutral and lacks a cyclopentadien
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: March 29, 2016
    Inventors: Matthew D. Christianson, Timothy S. De Vries, Robert D. Froese, Matthias S. Ober, Jasson T. Patton, Duane R. Romer, Gordon R. Roof, Lixin Sun, Endre Szuromi, Curt N. Theriault, Dean M. Welsh, Timothy T. Wenzel, Paul H. Moran
  • Publication number: 20160053031
    Abstract: Provided is a non-cyclopentadienyl-based chromium-ligand complex, preferably a chromium-ligand complex of formula (J): LCr(RA)m(D)k (J), wherein L is a non-Cp monoanionic ligand; Cr (chromium) is in a formal oxidation state of +3 or +2; when Cr formally is Cr+3, either m is 1 and RA is hydrocarbylene (a hydrocarbylene chromium-ligand complex of formula (J)) or m is 2 and each RA independently is hydrocarbyl (a dihydrocarbyl chromium-ligand complex of formula (J)), wherein each hydrocarbyl or hydrocarbylene of RA independently is unsubstituted or substituted by from 1 to 5 RAS; each RAS independently is a neutral aprotic heteroalkyl, neutral aprotic heterocycloalkyl, neutral aprotic heteroaryl, or neutral aprotic aryl; when Cr formally is Cr+2, m is 1 and RA is hydrocarbyl (a hydrocarbyl chromium-ligand complex of formula (J)); k is an integer of 0 or 1; D is absent when k is 0 or D is a neutral ligand when k is 1; wherein the chromium-ligand complex of formula (J) is overall neutral and lacks a cyclopentadien
    Type: Application
    Filed: November 3, 2015
    Publication date: February 25, 2016
    Inventors: Matthew D. Christianson, Timothy S. De Vries, Robert DJ Froese, Matthias S. Ober, Jasson T. Patton, Duane R. Romer, Gordon R. Roof, Lixin Sun, Endre Szuromi, Curt N. Theriault, Dean M. Welsh, Timothy T. Wenzel, Paul H. Moran
  • Publication number: 20150148502
    Abstract: Provided is a non-cyclopentadienyl-based chromium-ligand complex, preferably a chromium-ligand complex of formula (J): LCr(RA)m(D)k (J), wherein L is a non-Cp monoanionic ligand; Cr (chromium) is in a formal oxidation state of +3 or +2; when Cr formally is Cr+3, either m is 1 and RA is hydrocarbylene (a hydrocarbylene chromium-ligand complex of formula (J)) or m is 2 and each RA independently is hydrocarbyl (a dihydrocarbyl chromium-ligand complex of formula (J)), wherein each hydrocarbyl or hydrocarbylene of RA independently is unsubstituted or substituted by from 1 to 5 RAS; each RAS independently is a neutral aprotic heteroalkyl, neutral aprotic heterocycloalkyl, neutral aprotic heteroaryl, or neutral aprotic aryl; when Cr formally is Cr+2, m is 1 and RA is hydrocarbyl (a hydrocarbyl chromium-ligand complex of formula (J)); k is an integer of 0 or 1; D is absent when k is 0 or D is a neutral ligand when k is 1; wherein the chromium-ligand complex of formula (J) is overall neutral and lacks a cyclopentadien
    Type: Application
    Filed: May 11, 2012
    Publication date: May 28, 2015
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Matthew D. Christianson, Timothy S. De Vries, Robert D. Froese, Matthias S. Ober, Jasson T. Patton, Duane R. Romer, Gordon R. Roof, Lixin Sun, Endre Szuromi, Curt N. Theriault, Dean M. Welsh, Timothy T. Wenzel, Paul H. Moran
  • Publication number: 20140004464
    Abstract: A copolymer comprises the polymerized product of a dissolution-rate controlling monomer having the formula (I), an acyclic vinyl ether monomer of the formula (II), and a cyclic vinyl ether monomer of the formula (III): wherein Ra, Rb, Rc, L, X, and Z1 are defined herein. A photoresist composition comprising the copolymer is described, as is an article coated with the photoresist composition, and a method of forming an electronic device using the photoresist composition.
    Type: Application
    Filed: June 25, 2013
    Publication date: January 2, 2014
    Applicants: ROHM AND HAAS ELECTRONIC MATERIALS LLC, DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Matthew D. CHRISTIANSON, Matthew M. MEYER, Owendi Ongayi