Patents by Inventor Matthew Dallimore

Matthew Dallimore has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8374993
    Abstract: A method of identifying radioactive components in a source comprising (a) obtaining a gamma-ray spectrum from the source; (b) identifying peaks in the gamma-ray spectrum; (c) determining an array of peak energies and peak intensities from the identified peaks; (d) identifying an initial source component based on a comparison of the peak energies with a database of spectral data for radioactive isotopes of interest; (e) estimating a contribution of the initial source component to the peak intensities; (f) modifying the array of peak energies and peak intensities by subtracting the estimated contribution of the initial source component; and (g) identifying a further source component based on a comparison of the modified array of peak energies with the database of spectral data. Thus a method for identifying radioactive components in a source is provided which does not rely on comparing template spectra with an observed spectrum.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: February 12, 2013
    Assignee: Symetrica Limited
    Inventors: David Ramsden, Matthew Dallimore, Grant Crossingham
  • Publication number: 20100121811
    Abstract: A method of identifying radioactive components in a source comprising (a) obtaining a gamma-ray spectrum from the source; (b) identifying peaks in the gamma-ray spectrum; (c) determining an array of peak energies and peak intensities from the identified peaks; (d) identifying an initial source component based on a comparison of the peak energies with a database of spectral data for radioactive isotopes of interest; (e) estimating a contribution of the initial source component to the peak intensities; (f) modifying the array of peak energies and peak intensities by subtracting the estimated contribution of the initial source component; and (g) identifying a further source component based on a comparison of the modified array of peak energies with the database of spectral data. Thus a method for identifying radioactive components in a source is provided which does not rely on comparing template spectra with an observed spectrum.
    Type: Application
    Filed: October 16, 2007
    Publication date: May 13, 2010
    Inventors: David Ramsden, Matthew Dallimore, Grant Crossingham
  • Patent number: 7547887
    Abstract: A gamma ray detector (50) comprises a plastic scintillation body (52) arranged to receive incident gamma rays to be detected. Photons are generated in response to the gamma rays by excitation and de-excitation processes in the scintillation body. The photons are detected using at least one photodetector (56) which generates an output signal representative of the energy of the gamma rays. The scintillation body has a detection surface to receive the gamma rays and a thickness in a direction substantially orthogonal to the detection surface that is not greater than 5 cm. Deconvolution techniques can be used to improve the output signal; the thinness of the scintillation body allows sufficiently accurate results to be obtained that individual isotopes can be readily identified. The detector can be usefully employed in portal radiation monitors.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: June 16, 2009
    Assignee: Symetrica Limited
    Inventors: David Ramsden, Matthew Dallimore
  • Publication number: 20080067390
    Abstract: A gamma ray detector (50) comprises a plastic scintillation body (52) arranged to receive incident gamma rays to be detected. Photons are generated in response to the gamma rays by excitation and de-excitation processes in the scintillation body. The photons are detected using at least one photodetector (56) which generates an output signal representative of the energy of the gamma rays. The scintillation body has a detection surface to receive the gamma rays and a thickness in a direction substantially orthogonal to the detection surface that is not greater than 5 cm. Deconvolution techniques can be used to improve the output signal; the thinness of the scintillation body allows sufficiently accurate results to be obtained that individual isotopes can be readily identified. The detector can be usefully employed in portal radiation monitors.
    Type: Application
    Filed: May 13, 2005
    Publication date: March 20, 2008
    Inventors: David Ramsden, Matthew Dallimore