Patents by Inventor Matthew J. Golsen

Matthew J. Golsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10900361
    Abstract: An airfoil for a turbine engine includes an array of features positioned in an interior portion of the airfoil. Each feature extends from a pressure side to a suction side. The array includes multiple radial rows (A-N) of features with the features in each row (A-N) being interspaced radially to define coolant passages therebetween. The radial rows (A-N) are spaced along a forward-to-aft direction toward an airfoil trailing edge. The coolant passages of the array are fluidically interconnected to lead a pressurized coolant toward the trailing edge via a serial impingement on to the rows of features. The coolant passages are geometrically configured to bias a coolant flow therethrough toward a first side in relation to a second side of the outer wall to effect a greater cooling of the first side than the second side.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: January 26, 2021
    Inventors: Jan H. Marsh, Matthew J. Golsen, Daniel Joo
  • Patent number: 10704397
    Abstract: The present disclosure provides a core structure comprising a trailing edge section including a plurality of rib-forming apertures (126) defined by a plurality of radially-extending channel elements (130) and axially-extending passage elements (128) and a radially outer low flow framing channel element (134) located adjacent to a radially outer edge (124). The core structure may be used for casting a gas turbine engine airfoil (11). The radially outer framing channel element (134) comprises a plurality of notches (14) extending radially inwardly from the radially outer edge (124). A distal portion (144a) of the notches (140) overlaps in an axial direction with the rib-forming apertures (126) of a first axially-aligned outer row (138a). A radial height of at least one of a first and a second axially-extending passage element (148a, 148b, 150) is greater than a prevalent radial height of other axially-extending passage elements (128) in the core structure.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: July 7, 2020
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Jan H. Marsh, Wayne J. McDonald, Matthew J. Golsen
  • Publication number: 20200003060
    Abstract: A turbine element for high pressure drop and heat transfer. The turbine element includes a plurality of elements (16) radially placed in columns together aligned in a series of rows of at least four rows across an interior surface of an outer wall of an airfoil (10), creating a pin fin pattern (14) based on the shape of each of the plurality of elements (16), wherein each element (16) includes an inner length between an inner top edge and an inner bottom edge, an inner width between an inner left edge and an inner right edge. The pin fin pattern (14) is highly packed and fills a portion of the interior surface of the outer wall of the airfoil (10).
    Type: Application
    Filed: January 18, 2017
    Publication date: January 2, 2020
    Inventors: Jose L. Rodriguez, Matthew J. Golsen, John T. Harrington, Stephen Wright, Gary B. Merrill
  • Publication number: 20180283184
    Abstract: An airfoil (10) for a turbine engine includes an array of features (22) positioned in an interior portion (11) of the airfoil (10). Each feature (22) extends from a pressure (14) side to a suction side (16). The array includes multiple radial rows (A-N) of features (22) with the features (22) in each row (A-N) being interspaced radially to define coolant passages (24) therebetween. The radial rows (A-N) are spaced along a forward-to-aft direction toward an airfoil trailing edge (20). The coolant passages (24) of the array are fluidically interconnected to lead a pressurized coolant toward the trailing edge (20) via a serial impingement on to the rows of features (22). The coolant passages (24) are geometrically configured to bias a coolant flow therethrough toward a first side (14) in relation to a second side (16) of the outer wall (12) to effect a greater cooling of the first side (14) than the second side (16).
    Type: Application
    Filed: June 4, 2018
    Publication date: October 4, 2018
    Inventors: Jan H. Marsh, Matthew J. Golsen, Daniel JOO
  • Patent number: 9982893
    Abstract: A combustor assembly (17) including guide vanes (44) located between an inner cylinder (24) and a flow sleeve (25). Each guide vane (44) includes a circumferentially angled flow directing portion (60) adjacent to a leading edge (46). The leading edge (46) of at least one guide vane (44) can be located radially inward along the longitudinal axis (54) relative to the leading edge (46) of at least one other of the guide vanes (44). The length of the guide vanes (44) may vary, and the circumferential spacing between a first pair of the guide vanes (44) can be different from a spacing between a second pair of the guide vanes (44).
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: May 29, 2018
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Jose L. Rodriguez, Matthew J. Golsen
  • Publication number: 20180058225
    Abstract: The present disclosure provides a core structure comprising a trailing edge section including a plurality of rib-forming apertures (126) defined by a plurality of radially-extending channel elements (130) and axially-extending passage elements (128) and a radially outer low flow framing channel element (134) located adjacent to a radially outer edge (124). The core structure may be used for casting a gas turbine engine airfoil (11). The radially outer framing channel element (134) comprises a plurality of notches (14) extending radially inwardly from the radially outer edge (124). A distal portion (144a) of the notches (140) overlaps in an axial direction with the rib-forming apertures (126) of a first axially-aligned outer row (138a). A radial height of at least one of a first and a second axially-extending passage element (148a, 148b, 150) is greater than a prevalent radial height of other axially-extending passage elements (128) in the core structure.
    Type: Application
    Filed: April 3, 2015
    Publication date: March 1, 2018
    Inventors: Jan H. Marsh, Wayne J. McDonald, Matthew J. Golsen
  • Publication number: 20170284679
    Abstract: A combustor assembly (17) including guide vanes (44) located between an inner cylinder (24) and a flow sleeve (25). Each guide vane (44) includes a circumferentially angled flow directing portion (60) adjacent to a leading edge (46). The leading edge (46) of at least one guide vane (44) can be located radially inward along the longitudinal axis (54) relative to the leading edge (46) of at least one other of the guide vanes (44). The length of the guide vanes (44) may vary, and the circumferential spacing between a first pair of the guide vanes (44) can be different from a spacing between a second pair of the guide vanes (44).
    Type: Application
    Filed: September 5, 2014
    Publication date: October 5, 2017
    Inventors: Jose L. Rodriguez, Matthew J. Golsen
  • Patent number: 9551229
    Abstract: A turbine airfoil usable in a turbine engine and having at least one cooling system with an efficient trip strip is disclosed At least a portion of the cooling system may include one or more cooling channels having one or more trip strips protruding from an inner surface forming the cooling channel. The trip strip may have improved operating characteristics including enhanced heat transfer capabilities and a substantial reduction in pressure drop typically associated with conventional trip strips In at least one embodiment, the trip strip may have a cross-sectional area with a first section of an upstream surface of the trip strip being positioned nonparallel and nonorthogonal to a surface forming the cooling system channel extending upstream from the at least one trip strip and a concave shaped downstream surface of the at least one trip strip that enables separated flow to reattach to the cooling fluid flow.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: January 24, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jose L. Rodriguez, Matthew J. Golsen
  • Publication number: 20150184524
    Abstract: A turbine airfoil usable in a turbine engine and having at least one cooling system with an efficient trip strip is disclosed At least a portion of the cooling system may include one or more cooling channels having one or more trip strips protruding from an inner surface forming the cooling channel. The trip strip may have improved operating characteristics including enhanced heat transfer capabilities and a substantial reduction in pressure drop typically associated with conventional trip strips In at least one embodiment, the trip strip may have a cross-sectional area with a first section of an upstream surface of the trip strip being positioned nonparallel and nonorthogonal to a surface forming the cooling system channel extending upstream from the at least one trip strip and a concave shaped downstream surface of the at least one trip strip that enables separated flow to reattach to the cooling fluid flow.
    Type: Application
    Filed: December 26, 2013
    Publication date: July 2, 2015
    Inventors: Jose L. Rodriguez, Matthew J. Golsen