Patents by Inventor Matthew J. King

Matthew J. King has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240112734
    Abstract: A variety of applications can include memory devices designed to provide enhanced gate-induced-drain-leakage (GIDL) current during memory erase operations. The enhanced operation can be provided by enhancing the electric field in the channel structures of select gate transistors to strings of memory cells. The channel structures can be implemented as a segmented portion for drains and a portion opposite a gate. The segmented portion includes one or more fins and one or more non-conductive regions with both fins and non-conductive regions extending vertically from the portion opposite the gate. Variations of a border region for the portion opposite the gate with the segmented portion can include fanged regions extending from the fins into the portion opposite the gate or rounded border regions below the non-conductive regions. Such select gate transistors can be formed using a single photo mask process. Additional devices, systems, and methods are discussed.
    Type: Application
    Filed: December 5, 2023
    Publication date: April 4, 2024
    Inventors: Darwin A. Clampitt, Albert Fayrushin, Matthew J. King, Madison D. Drake
  • Publication number: 20240099007
    Abstract: A microelectronic device comprises a stack structure comprising a stack structure comprising a vertically alternating sequence of conductive structures and insulative structures arranged in tiers, the stack structure divided into block structures separated from one another by slot structures, strings of memory cells vertically extending through the block structures of the stack structure, the strings of memory cells individually comprising a channel material vertically extending through the stack structure, an additional stack structure vertically overlying the stack structure and comprising a vertical sequence of additional conductive structures and additional insulative structures arranged in additional tiers, first pillars extending through the additional stack structure and vertically overlying the strings of memory cells, each of the first pillars horizontally offset from a center of a corresponding string of memory cells, second pillars extending through the additional stack structure and vertically ove
    Type: Application
    Filed: November 30, 2023
    Publication date: March 21, 2024
    Inventors: Yoshiaki Fukuzumi, Jun Fujiki, Matthew J. King, Sidhartha Gupta, Paolo Tessariol, Kunal Shrotri, Kye Hyun Baek, Kyle A. Ritter, Shuji Tanaka, Umberto Maria Meotto, Richard J. Hill, Matthew Holland
  • Patent number: 11937428
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a stack comprising vertically-alternating first tiers and second tiers. Intervening material is formed into the stack laterally-between and longitudinally-along immediately-laterally-adjacent memory block regions. The forming of the intervening material comprises forming pillars laterally-between and longitudinally-spaced-along the immediately-laterally-adjacent memory-block regions. The pillars individually extend through multiple of each of the first tiers and the second tiers. After forming the pillars, an intervening opening is formed individually alongside and between immediately-longitudinally-adjacent of the pillars. Fill material is formed in the intervening openings. Other embodiments, including structure, are disclosed.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: March 19, 2024
    Assignee: Micron Technology, Inc.
    Inventor: Matthew J. King
  • Publication number: 20240081076
    Abstract: An electronic device comprises a stack comprising tiers of alternating conductive structures and insulative structures adjacent to a source, and strings of memory cells extending vertically through the stack. The strings of memory cells individually comprising a channel material extending vertically through the stack. The electronic device comprises an additional stack adjacent to the stack and comprising tiers of alternating additional conductive structures and additional insulative structures, pillars extending through the additional stack and adjacent to the strings of memory cells, conductive contacts adjacent to the pillars, and isolation structures laterally intervening between neighboring pillars. The isolation structures exhibit a weave pattern, and portions of the isolation structures are laterally adjacent to and physically contact the conductive contacts. Related memory devices, systems, and methods are also described.
    Type: Application
    Filed: September 6, 2022
    Publication date: March 7, 2024
    Inventors: Sidhartha Gupta, Matthew J. King, Jiewei Chen, Yi Hu
  • Publication number: 20240074201
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a stack comprising vertically-alternating different-composition first tiers and second tiers. The stack comprises lower channel-material strings extending through the first tiers and the second tiers. Conductive masses are formed that comprise at least one of conductively-doped semiconductive material or conductive metal material. Individual of the conductive masses are atop and directly electrically coupled to individual of the lower channel-material strings. Upper channel-material strings of select-gate transistors are formed directly above the stack. Individual of the upper channel-material strings are directly above and directly electrically coupled to individual of the conductive masses. Other embodiments, including structure, are disclosed.
    Type: Application
    Filed: August 23, 2022
    Publication date: February 29, 2024
    Applicant: Micron Technology, Inc.
    Inventors: Matthew J. King, Albert Fayrushin, Sidhartha Gupta, Jun Fujiki, Masashi Yoshida, Yiping Wang, Taehyun Kim, Arun Kumar Dhayalan
  • Publication number: 20240064982
    Abstract: Some embodiments include an integrated assembly having a first structure containing semiconductor material, and having a second structure contacting the first structure. The first structure has a composition along an interface with the second structure. The composition includes additive to a concentration within a range of from about 1018 atoms/cm3 to about 1021 atoms/cm3. The additive includes one or more of carbon, oxygen, nitrogen and sulfur. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: November 2, 2023
    Publication date: February 22, 2024
    Applicant: Micron Technology, Inc.
    Inventors: Yiping Wang, Andrew Li, Haoyu Li, Matthew J. King, Wei Yeeng Ng, Yongjun Jeff Hu
  • Patent number: 11910601
    Abstract: A microelectronic device includes a pair of stack structures. The pair comprises a lower stack structure and an upper stack structure overlying the lower stack structure. The lower stack structure and the upper stack structure each comprise a vertically alternating sequence of insulative structures and conductive structures arranged in tiers. A source region is vertically interposed between the lower stack structure and the upper stack structure. A first array of pillars extends through the upper stack structure, from proximate the source region toward a first drain region above the upper stack structure. A second array of pillars extend through the lower stack structure, from proximate the source region toward a second drain region below the lower stack structure. Additional microelectronic devices are also disclosed, as are related methods and electronic systems.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: February 20, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Darwin A. Clampitt, John D. Hopkins, Matthew J. King, Roger W. Lindsay, Kevin Y. Titus
  • Publication number: 20240057337
    Abstract: Microelectronic devices include a stack structure comprising a vertically alternating sequence of insulative structures and conductive structures arranged in tiers. A series of pillars extends through the stack structure. At least one isolation structure extends through an upper stack portion of the stack structure. The at least one isolation structure protrudes into pillars of neighboring columns of pillars of the series of pillars. Conductive contacts are in electrical communication with the pillars into which the at least one isolation structure protrudes. Related methods and electronic systems are also disclosed.
    Type: Application
    Filed: October 23, 2023
    Publication date: February 15, 2024
    Inventors: Matthew J. King, David A. Daycock, Yoshiaki Fukuzumi, Albert Fayrushin, Richard J. Hill, Chandra S. Tiwari, Jun Fujiki
  • Patent number: 11903196
    Abstract: A microelectronic device comprises a stack structure comprising a stack structure comprising a vertically alternating sequence of conductive structures and insulative structures arranged in tiers, the stack structure divided into block structures separated from one another by slot structures, strings of memory cells vertically extending through the block structures of the stack structure, the strings of memory cells individually comprising a channel material vertically extending through the stack structure, an additional stack structure vertically overlying the stack structure and comprising a vertical sequence of additional conductive structures and additional insulative structures arranged in additional tiers, first pillars extending through the additional stack structure and vertically overlying the strings of memory cells, each of the first pillars horizontally offset from a center of a corresponding string of memory cells, second pillars extending through the additional stack structure and vertically ove
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: February 13, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Yoshiaki Fukuzumi, Jun Fujiki, Matthew J. King, Sidhartha Gupta, Paolo Tessariol, Kunal Shrotri, Kye Hyun Baek, Kyle A. Ritter, Shuji Tanaka, Umberto Maria Meotto, Richard J. Hill, Matthew Holland
  • Patent number: 11887667
    Abstract: A variety of applications can include memory devices designed to provide enhanced gate-induced-drain-leakage (GIDL) current during memory erase operations. The enhanced operation can be provided by enhancing the electric field in the channel structures of select gate transistors to strings of memory cells. The channel structures can be implemented as a segmented portion for drains and a portion opposite a gate. The segmented portion includes one or more fins and one or more non-conductive regions with both fins and non-conductive regions extending vertically from the portion opposite the gate. Variations of a border region for the portion opposite the gate with the segmented portion can include fanged regions extending from the fins into the portion opposite the gate or rounded border regions below the non-conductive regions. Such select gate transistors can be formed using a single photo mask process. Additional devices, systems, and methods are discussed.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: January 30, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Darwin A. Clampitt, Albert Fayrushin, Matthew J. King, Madison D Drake
  • Patent number: 11844220
    Abstract: Some embodiments include an integrated assembly having a first structure containing semiconductor material, and having a second structure contacting the first structure. The first structure has a composition along an interface with the second structure. The composition includes additive to a concentration within a range of from about 1018 atoms/cm3 to about 1021 atoms/cm3. The additive includes one or more of carbon, oxygen, nitrogen and sulfur. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: December 2, 2022
    Date of Patent: December 12, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Yiping Wang, Andrew Li, Haoyu Li, Matthew J. King, Wei Yeeng Ng, Yongjun Jeff Hu
  • Patent number: 11805645
    Abstract: Some embodiments include a structure having an opening extending into an integrated configuration. A first material is within the opening, and is configured to create an undulating topography relative to a sidewall of the opening. The undulating topography has a surface roughness characterized by a mean roughness parameter Rmean which is the mean peak-to-valley distance along the undulating topography. The Rmean is at least about 4 nm. A second material is within the opening and along at least a portion of the undulating topography. The first and second materials are compositionally different from one another. Some embodiments include integrated assemblies. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: October 31, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Nicholas R. Tapias, Andrew Li, Adam W. Saxler, Kunal Shrotri, Erik R. Byers, Matthew J. King, Diem Thy N. Tran, Wei Yeeng Ng, Anish A. Khandekar
  • Patent number: 11800717
    Abstract: Microelectronic devices include a stack structure comprising a vertically alternating sequence of insulative structures and conductive structures arranged in tiers. A series of pillars extends through the stack structure. At least one isolation structure extends through an upper stack portion of the stack structure. The at least one isolation structure protrudes into pillars of neighboring columns of pillars of the series of pillars. Conductive contacts are in electrical communication with the pillars into which the at least one isolation structure protrudes. Related methods and electronic systems are also disclosed.
    Type: Grant
    Filed: May 2, 2022
    Date of Patent: October 24, 2023
    Inventors: Matthew J. King, David A. Daycock, Yoshiaki Fukuzumi, Albert Fayrushin, Richard J. Hill, Chandra S. Tiwari, Jun Fujiki
  • Publication number: 20230335439
    Abstract: A microelectronic device comprises a stack structure comprising alternating conductive structures and insulative structures. Memory cells vertically extend through the stack structure, and comprise a channel material vertically extending through the stack structure. An additional stack structure vertically overlies the stack structure and comprises additional conductive structures and additional insulative structures. First pillar structures extend through the additional stack structure and vertically overlie a portion of the memory cells. Second pillar structures are adjacent to the first pillar structures and extend through the additional stack structure and vertically overlie another portion of the memory cells. Slot structures are laterally adjacent to the first pillar structures and to the second pillar structures and extend through at least a portion of the additional stack structure.
    Type: Application
    Filed: April 14, 2022
    Publication date: October 19, 2023
    Inventors: Chandra S. Tiwari, David A. Kewley, Deep Panjwani, Matthew Holland, Matthew J. King, Michael E. Koltonski, Tom J. John, Xiaosong Zhang, Yi Hu
  • Patent number: 11756826
    Abstract: A termination opening can be formed through the stack alternating dielectrics concurrently with forming contact openings through the stack. A termination structure can be formed in the termination opening. An additional opening can be formed through the termination structure and through the stack between groups of semiconductor structures that pass through the stack. In another example, an opening can be formed through the stack so that a first segment of the opening is between groups of semiconductor structures in a first region of the stack and a second segment of the opening is in a second region of the stack that does not include the groups of semiconductor structures. A material can be formed in the second segment so that the first segment terminates at the material. In some instances, the material can be implanted in the dielectrics in the second region through the second segment.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: September 12, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Matthew J. King, Anilkumar Chandolu, Indra V. Chary, Darwin A. Clampitt, Gordon Haller, Thomas George, Brett D. Lowe, David A. Daycock
  • Patent number: 11742380
    Abstract: A variety of applications can include memory devices designed to provide enhanced gate-induced-drain-leakage (GIDL) current during memory erase operations. The enhanced operation can be provided by enhancing the electric field in the channel structures of the topmost select gate transistors to strings of memory cells upon application of a voltage to the gates of the topmost select gate transistors. This electric field can be provided by using a dissected plug as a contact to the channel structure of the topmost select gate transistor, where the dissected plug has one or more conductive regions contacting the channel structure and one or more non-conductive regions contacting the channel structure. The dissected plug can be part of a contact between the data line and the channel structure. Additional devices, systems, and methods are discussed.
    Type: Grant
    Filed: April 6, 2022
    Date of Patent: August 29, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Albert Fayrushin, Haitao Liu, Matthew J. King
  • Patent number: 11705385
    Abstract: A method used in forming a memory array and conductive through-array-vias (TAVs) comprises forming a stack comprising vertically-alternating insulative tiers and wordline tiers. A mask is formed comprising horizontally-elongated trench openings and operative TAV openings above the stack. Etching is conducted of unmasked portions of the stack through the trench and operative TAV openings in the mask to form horizontally-elongated trench openings in the stack and to form operative TAV openings in the stack. Conductive material is formed in the operative TAV openings in the stack to form individual operative TAVs in individual of the operative TAV openings in the stack. A wordline-intervening structure is formed in individual of the trench openings in the stack.
    Type: Grant
    Filed: July 6, 2021
    Date of Patent: July 18, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Indra V. Chary, Chet E. Carter, Anilkumar Chandolu, Justin B. Dorhout, Jun Fang, Matthew J. King, Brett D. Lowe, Matthew Park, Justin D. Shepherdson
  • Patent number: 11700729
    Abstract: A memory array comprising strings of memory cells comprises laterally-spaced memory blocks individually comprising a vertical stack comprising alternating insulative tiers and conductive tiers. Operative channel-material strings of memory cells extend through the insulative tiers and the conductive tiers. Intervening material is laterally-between and longitudinally-along immediately-laterally-adjacent of the memory blocks. The intervening material comprises longitudinally-alternating first and second regions that individually have a vertically-elongated seam therein. The vertically-elongated seam in the first regions are taller than in the second regions. Additional embodiments, including method, are disclosed.
    Type: Grant
    Filed: November 12, 2021
    Date of Patent: July 11, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Yi Hu, Ramey M. Abdelrahaman, Narula Bilik, Daniel Billingsley, Zhenyu Bo, Joan M. Kash, Matthew J. King, Andrew Li, David Neumeyer, Wei Yeeng Ng, Yung K. Pak, Chandra Tiwari, Yiping Wang, Lance Williamson, Xiaosong Zhang
  • Patent number: 11641741
    Abstract: Microelectronic devices include a stack structure with a vertically alternating sequence of insulative structures and conductive structures arranged in tiers. A series of slit structures extends through the stack structure and divides the stack structure into a series of blocks. In a progressed portion of the series of blocks, each block comprises an array of pillars extending through the stack structure of the block. Also, each block—in the progressed portion—has a different block width than a block width of a neighboring block of the progressed portion of the series of blocks. At least one pillar, of the pillars of the array of pillars in the progressed portion, exhibits bending. Related methods and electronic systems are also disclosed.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: May 2, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Kaiming Luo, Sarfraz Qureshi, Md Zakir Ullah, Jessica Jing Wen Low, Harsh Narendrakumar Jain, Kok Siak Tang, Indra V. Chary, Matthew J. King
  • Patent number: 11641742
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a stack comprising vertically-alternating first tiers and second tiers. Horizontally-elongated trenches are formed into the stack to form laterally-spaced memory-block regions. A wall is formed in individual of the trenches laterally-between immediately-laterally-adjacent of the memory-block regions. The forming of the wall comprises lining sides of the trenches with insulative material comprising at least one of an insulative nitride and elemental-form boron. A core material is formed in the trenches to span laterally-between the at least one of the insulative nitride and the elemental-form boron. Structure independent of method is disclosed.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: May 2, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Cole Smith, Ramey M. Abdelrahaman, Silvia Borsari, Chris M. Carlson, David Daycock, Matthew J. King, Jin Lu