Patents by Inventor Matthew Lane

Matthew Lane has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140343669
    Abstract: A method for delivering a prosthetic valve to a patient's heart having a native valve with a plurality of valve leaflets includes providing a delivery device with a prosthetic valve, advancing the delivery device toward the native valve, and expanding a portion of the prosthetic valve to form a flanged region that is upstream of the valve leaflets. One or more tabs on the prosthetic valve are released so that they expand outward to a position that is transverse to the longitudinal axis of the prosthetic valve. The position of the prosthetic valve is adjusted relative to the valve leaflets and rapid pacing is applied to the patient's heart so that the valve leaflets move inward toward the prosthetic valve or the delivery device. The tabs are further released to allow the tabs to move into their final positions.
    Type: Application
    Filed: April 1, 2014
    Publication date: November 20, 2014
    Applicant: Neovasc Tiara Inc.
    Inventors: Randy Matthew Lane, Alexei J. Marko, Colin A. Nyuli, Krista L. Neale
  • Publication number: 20140257467
    Abstract: A prosthetic valve for implanting in a patient's native valve has a self-expanding frame that comprises a first end, a second end opposite the first end, an anterior portion, and a posterior portion. The self-expanding frame has an expanded configuration adapted to engage tissue at a treatment site, and a collapsed configuration adapted to be delivered to the treatment site. The expandable frame also comprises a self-expanding atrial skirt near the second end, a self-expanding ventricular skirt near the first end, a self-expanding annular region disposed between first and second ends, a first self-expanding anterior tab disposed on the anterior portion, and a self-expanding foot coupled to the posterior portion and extending radially outward. The foot has an outer surface for engaging the tissue thereby facilitating anchoring of the prosthetic valve and minimizing or preventing rotation of the prosthetic valve.
    Type: Application
    Filed: March 3, 2014
    Publication date: September 11, 2014
    Applicant: Neovasc Tiara Inc.
    Inventors: Randy Matthew Lane, Colin A. Nyuli, Alexei J. Marko, Krista L. Neale
  • Publication number: 20140155990
    Abstract: A device for loading a prosthesis onto a delivery system includes a first housing having a central bore. One or more actuators on the first housing may be actuated radially inward to selectively compress a discrete portion of the prosthesis disposed in the central bore.
    Type: Application
    Filed: May 29, 2013
    Publication date: June 5, 2014
    Applicant: NEOVASC INC.
    Inventors: Colin A. Nyuli, Randy Matthew Lane
  • Patent number: 8740975
    Abstract: A method for delivering and deploying a self-expandable heart valve to a site of implantation such as the aortic annulus. The deployment step may include engaging an outer surface of the heart valve with a plurality of distal fingers and a plurality of proximal fingers. Controlled radial movement of the fingers regulates the expansion of the heart valve. The fingers may be removed prior to inflation of a balloon to fully expand the valve, or the fingers may be repositioned to the inside of the valve for this purpose. The deployment step may include an umbrella structure that forces the valve outward into its fully expanded configuration. Alternatively, a gear shaft that engages one or more gear tracks on the valve may be utilized to regulate expansion of the valve. A stabilization balloon may be used to axially and radially locate the deployment mechanism relative to the site of implantation.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: June 3, 2014
    Assignee: Edwards Lifesciences Corporation
    Inventors: Jibin Yang, Matthew Lane Pease, Scott Hyler Heneveld, Sr., Brandon G. Walsh
  • Publication number: 20140052237
    Abstract: A prosthetic valve comprises a self-expanding frame which includes a self-expanding atrial skirt that forms a flanged region, a self-expanding ventricular skirt, and a first self-expanding tab coupled with the ventricular skirt. A receptacle for receiving a valve leaflet is formed by the area bounded by an outer surface of the atrial skirt, an outer surface of the ventricular skirt, and an inner surface of the first tab. The receptacle has a window for receiving the valve leaflet that is defined by a gap between an edge of the flange and a tip of the first tab. The gap is maximized when the tip of the first tab is unconstrained and a base of the first tab is at least partially constrained. The gap is minimized when the tip of the first tab and its base are unconstrained.
    Type: Application
    Filed: February 8, 2013
    Publication date: February 20, 2014
    Applicant: NEOVASC, INC.
    Inventors: Randy Matthew Lane, Colin A. Nyuli, Alexei J. Marko
  • Publication number: 20140039611
    Abstract: A prosthetic cardiac valve comprises an anchor having an atrial skirt, an annular region, and a ventricular skirt. The prosthetic valve also has a plurality of prosthetic valve leaflets each having a first end and a free end. The first end is coupled with the anchor and the free end is opposite the first end. The prosthetic cardiac valve has an open configuration in which the free ends of the prosthetic valve leaflets are disposed away from one another to allow antegrade blood flow therepast, and a closed configuration in which the free ends of the prosthetic valve leaflets engage one another and substantially prevent retrograde blood flow therepast. The anchor has a collapsed configuration for delivery to the heart and an expanded configuration for anchoring the prosthetic cardiac valve to a patient's heart.
    Type: Application
    Filed: October 4, 2013
    Publication date: February 6, 2014
    Applicant: Neovasc Inc.
    Inventors: Randy Matthew Lane, Colin A. Nyuli
  • Patent number: 8579964
    Abstract: A prosthetic cardiac valve comprises an anchor having an atrial skirt, an annular region, and a ventricular skirt. The prosthetic valve also has a plurality of prosthetic valve leaflets each having a first end and a free end. The first end is coupled with the anchor and the free end is opposite the first end. The prosthetic cardiac valve has an open configuration in which the free ends of the prosthetic valve leaflets are disposed away from one another to allow antegrade blood flow therepast, and a closed configuration in which the free ends of the prosthetic valve leaflets engage one another and substantially prevent retrograde blood flow therepast. The anchor has a collapsed configuration for delivery to the heart and an expanded configuration for anchoring the prosthetic cardiac valve to a patient's heart.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: November 12, 2013
    Assignee: Neovasc Inc.
    Inventors: Randy Matthew Lane, Colin A. Nyuli
  • Publication number: 20130211508
    Abstract: A sequentially deployed prosthetic cardiac valve includes a self-expanding frame having an atrial skirt, a ventricular skirt, and an annular region disposed therebetween. A first anterior tab is disposed on an anterior portion of the frame. A posterior tab is on a posterior portion of the self-expanding frame. The frame may be designed so that any portion may expand sequentially in any desired order. For example, a portion of the first anterior tab and a portion of the posterior tab may partially self-expand first. Next, the first anterior tab may fully self-expand before the posterior tab fully self-expands. The posterior tab may fully self-expand next followed by the ventricular skirt, or the ventricular skirt may self-expand next followed by full expansion of the posterior tab.
    Type: Application
    Filed: November 16, 2012
    Publication date: August 15, 2013
    Applicant: NEOVASC INC.
    Inventors: Randy Matthew Lane, Colin A. Nyuli, Alexei J. Marko, Krista L. Neale
  • Patent number: 8271400
    Abstract: A hardware pay-per-use system and corresponding method allow computer system operators to tailor their hardware utilization to more closely match changing customer demands. The hardware pay-per-use system includes one or more hardware products and a metering mechanism coupled to at least one of the hardware products. The metering mechanism includes a hardware device separate from the hardware products. The metering mechanism acquires metrics data from the hardware products, the metrics data related to an operation at the hardware products. The metering mechanism determines data to report on the operation of the hardware products. A usage repository coupled to the metering mechanism receives the determined data and generates usage reports related to the operation of the hardware products.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: September 18, 2012
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Robert C. Lehr, Arif Sardar, Matthew Lane, Winthrop Reis, Cynthia Alderson, Patrick Allaire, Richard Birrell, Christopher K Buss, Paula Zimon Clawson, Michael Graf, Arthur F. Green, Monica Lasgoity, Susan C. Neidhart, Anthony Keith Towles, Carol Uno
  • Publication number: 20120179243
    Abstract: A method for replacing native valve function of a diseased aortic valve in a patient is provided. The method comprises: (a) guiding a catheter system having a balloon through the vasculature of the patient; (b) guiding an artificial heart valve assembly through the vasculature of the patient; (c) while the catheter system is in the patient's vasculature, positioning the artificial heart valve assembly about the balloon of the catheter system; (d) delivering the artificial heart valve assembly to the region of the diseased aortic valve; (e) while the patient's heart is beating, expanding the artificial heart valve assembly in the region of the diseased aortic valve; and (f) withdrawing the catheter system from the patient's vasculature.
    Type: Application
    Filed: January 13, 2012
    Publication date: July 12, 2012
    Applicant: Edwards Lifesciences Corporation
    Inventors: Jibin Yang, Scott Hyler Heneveld, SR., Matthew Lane Pease, Brandon G. Walsh
  • Publication number: 20110319989
    Abstract: A prosthetic cardiac valve comprises an anchor having an atrial skirt, an annular region, and a ventricular skirt. The prosthetic valve also has a plurality of prosthetic valve leaflets each having a first end and a free end. The first end is coupled with the anchor and the free end is opposite the first end. The prosthetic cardiac valve has an open configuration in which the free ends of the prosthetic valve leaflets are disposed away from one another to allow antegrade blood flow therepast, and a closed configuration in which the free ends of the prosthetic valve leaflets engage one another and substantially prevent retrograde blood flow therepast. The anchor has a collapsed configuration for delivery to the heart and an expanded configuration for anchoring the prosthetic cardiac valve to a patient's heart.
    Type: Application
    Filed: April 28, 2011
    Publication date: December 29, 2011
    Applicant: NEOVASC, Inc.
    Inventors: Randy Matthew Lane, Colin A. Nyuli
  • Patent number: 7868914
    Abstract: A method for calculating a parameter from an image sequence includes selecting a first frame and a second frame in an image sequence. The image sequence has a frame speed. The image sequence or another image sequence is enhanced using a calculation that considers the frame speed and selected frames. The enhancement may be with text, graphics or both such as those that may present statistics corresponding to an event in the image sequence.
    Type: Grant
    Filed: June 7, 2005
    Date of Patent: January 11, 2011
    Assignee: SportsMEDIA Technology Corporation
    Inventors: John D. Dengler, Erik J. Garci, Brian C. Cox, Kenneth T. Tolman, Hans Weber, Gerard J. Hall, Matthew Lane Rosen
  • Publication number: 20090254177
    Abstract: A system for delivering and deploying a self-expandable heart valve to a site of implantation such as the aortic annulus includes a deployment mechanism that engages the valve and regulates the rate of expansion of both the proximal and distal ends thereof. The heart valve may be a rolled-type valve and the deployment mechanism may include a plurality of distal fingers and a plurality of proximal fingers that engage the outer layer of the head valve. Controlled radial movement of the fingers regulates the unwinding of the rolled heart valve. The fingers may be removed prior to inflation of a balloon to fully expand the valve, or the fingers may be repositioned to the inside of the valve for this purpose. The deployment mechanism may include an umbrella structure that forces the rolled valve outward into its fully expanded configuration. Alternatively, a gear shaft that engages one or more gear tracks on the valve may be utilized to regulate expansion of the valve.
    Type: Application
    Filed: June 19, 2009
    Publication date: October 8, 2009
    Applicant: Edwards Lifesciences Corporation
    Inventors: Jibin Yang, Matthew Lane Pease, Scott Hyler Heneveld, SR., Brandon G. Walsh
  • Patent number: 7556646
    Abstract: A system for delivering and deploying a self-expandable heart valve includes a deployment mechanism that engages the valve and regulates the rate of expansion of both the proximal and distal ends thereof. The deployment mechanism may include a plurality of distal fingers and a plurality of proximal fingers that engage the end portions of the heart valve. Controlled radial movement of the fingers regulates the expansion of the heart valve such that the proximal and distal ends radially expand at the same rate. A stabilization balloon may be used to axially and radially locate the deployment mechanism relative to the site of implantation. Methods of operation of the delivery and deployment mechanism include regulating the rate of self-expansion of the valve and forcing the valve outward into its fully expanded configuration utilizing the same or different means.
    Type: Grant
    Filed: September 13, 2001
    Date of Patent: July 7, 2009
    Assignee: Edwards Lifesciences Corporation
    Inventors: Jibin Yang, Scott Hyler Heneveld, Sr., Matthew Lane Pease, Brandon G. Walsh
  • Publication number: 20060021003
    Abstract: A full-featured authentication framework is provided that allows for the dynamic selection of authentication modalities based on need and/or environment. The framework comprises a server responsible for handling requests for data and services from the other components, a logon module, a user administration tool and a system administration tool. The authentication framework may be used in a multi-biometric environment or one that contains a combination of any other authentication techniques. The system is built on a BioAPI framework and uses common data security architecture. A primary feature of the system of the present invention is the facilitation of the installation of authentication modalities, possibly from numerous vendors, thereby allowing for plug-and-play of new biometric functionality and additional core data security modules with no extra programming effort.
    Type: Application
    Filed: June 23, 2005
    Publication date: January 26, 2006
    Inventors: Patricia Fisher, Adam Fisher, Bryan Cockrell, Scott Kopcha, Matthew Lane
  • Patent number: 6723122
    Abstract: Storage containers for expandable heart valves for minimally invasive valve replacement surgeries are disclosed. The containers permit an expandable valve to be stored in its expanded configuration and then converted to its contracted configuration while still in the container. A mechanism incorporated into the container facilitates the conversion. For example, the container may have a base and a lid, and a crank manipulable from outside. The lid actuates a key within the container that engages the valve to perform the contraction. If the valve is a spirally wound type of expandable valve, the key may be attached to an inner side edge and rotated to wind the valve into a tight spiral. A drain in the container may facilitate removal of a preservative solution so that the valve can be seen during the contraction process, or so that the valve can be rinsed while still within the container.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: April 20, 2004
    Assignee: Edwards Lifesciences Corporation
    Inventors: Jibin Yang, Matthew Lane Pease, Brandon G. Walsh
  • Publication number: 20030135380
    Abstract: A hardware pay-per-use system and corresponding method allow computer system operators to tailor their hardware utilization to more closely match changing customer demands. The hardware pay-per-use system includes one or more hardware products and a metering mechanism coupled to at least one of the hardware products. The metering mechanism includes a hardware device separate from the hardware products. The metering mechanism acquires metrics data from the hardware products, the metrics data related to an operation at the hardware products. The metering mechanism determines data to report on the operation of the hardware products. A usage repository coupled to the metering mechanism receives the determined data and generates usage reports related to the operation of the hardware products.
    Type: Application
    Filed: January 15, 2002
    Publication date: July 17, 2003
    Inventors: Robert C. Lehr, Arif Sardar, Matthew Lane, Winthrop Reis, Cynthia Alderson, Patrick Allaire, Richard Birrell, Christopher K. Buss, Paula Zimon Clawson, Michael Graf, Arthur F. Green, Monica Lasgoity, Susan C. Neidhart, Anthony Keith Towles, Carol Uno
  • Publication number: 20030050694
    Abstract: A system for delivering and deploying a self-expandable heart valve to a site of implantation such as the aortic annulus includes a deployment mechanism that engages the valve and regulates the rate of expansion of both the proximal and distal ends thereof. The heart valve may be a rolled-type valve and the deployment mechanism may include a plurality of distal fingers and a plurality of proximal fingers that engage the outer layer of the heart valve. Controlled radial movement of the fingers regulates the unwinding of the rolled heart valve. The fingers may be removed prior to inflation of a balloon to fully expand the valve, or the fingers may be repositioned to the inside of the valve for this purpose. The deployment mechanism may include an umbrella structure that forces the rolled valve outward into its fully expanded configuration. Alternatively, a gear shaft that engages one or more gear tracks on the valve may be utilized to regulate expansion of the valve.
    Type: Application
    Filed: September 13, 2001
    Publication date: March 13, 2003
    Inventors: Jibin Yang, Scott Hyler Heneveld, Matthew Lane Pease, Brandon G. Walsh
  • Publication number: 20030045928
    Abstract: Storage containers for expandable heart valves for minimally invasive valve replacement surgeries are disclosed. The containers permit an expandable valve to be stored in its expanded configuration and then converted to its contracted configuration while still in the container. A mechanism incorporated into the container facilitates the conversion. For example, the container may have a base and a lid, and a crank manipulable from outside. The lid actuates a key within the container that engages the valve to perform the contraction. If the valve is a spirally wound type of expandable valve, the key may be attached to an inner side edge and rotated to wind the valve into a tight spiral. A drain in the container may facilitate removal of a preservative solution so that the valve can be seen during the contraction process, or so that the valve can be rinsed while still within the container.
    Type: Application
    Filed: August 30, 2001
    Publication date: March 6, 2003
    Inventors: Jibin Yang, Matthew Lane Pease, Brandon G. Walsh
  • Publication number: 20030026908
    Abstract: The invention provides coating compositions which are simultaneously sandable and self-healable shortly after application to a substrate and without the use of thermal curing. Said compositions have a film-forming component (A) with a first acrylic polymer (ai) having a number average molecular weight of from 1500 to 3000, an equivalent weight of from 375 to 475, and a plurality of functional groups wherein at least 60 to 100% of the functional groups are secondary hydroxyl groups, a second acrylic polymer (aii) having a number average molecular weight of from 3500 to 5000, an equivalent weight of from 550 to 750, and a plurality of functional groups with at least 75 to 100% of the functional groups being primary hydroxyl groups as well as a crosslinking component (B) comprising at least one aliphatic isocyanate functional trimer (bi), and at least one cycloaliphatic isocyanate functional trimer (bii).
    Type: Application
    Filed: April 26, 2002
    Publication date: February 6, 2003
    Inventors: Matthew Lane, Keith Starr, Michael R. Carroll, Bradley Richards