Patents by Inventor Matthew Sysak

Matthew Sysak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230418005
    Abstract: A first chip includes a first plurality of optical waveguides exposed at a facet of the first chip. A second chip includes a second plurality of optical waveguides exposed at a facet of the second chip. The second chip includes first and second spacers on opposite sides of the second plurality of optical waveguides. The first and second spacers have respective alignment surfaces oriented substantially parallel to the facet of the second chip at a controlled perpendicular distance away from the facet of the second chip. The second chip is positioned with the alignment surfaces of the first and second spacers contacting the facet of the first chip, and with the second plurality of optical waveguides respectively aligned with the first plurality of optical waveguides. The first and second spacers define and maintain an air gap of at least micrometer-level precision between the first and second pluralities of optical waveguides.
    Type: Application
    Filed: September 7, 2023
    Publication date: December 28, 2023
    Inventors: Manan Raval, Matthew Sysak, Chen Li, Chong Zhang
  • Publication number: 20230353254
    Abstract: An optical data communication system includes an optical power supply and an electro-optical chip. The optical power supply includes a laser that generates laser light at a single wavelength. A comb generator receives the light at the single wavelength and generates multiple wavelengths of continuous wave light from laser light at the single wavelength. The multiple wavelengths of continuous wave light are provided as light input to the electro-optical chip. The electro-optical chip includes at least one transmit macro that receives the multiple wavelengths of continuous wave light and that modulates one or more of the multiple wavelengths of continuous wave light to generate modulated light signals that convey digital data.
    Type: Application
    Filed: July 11, 2023
    Publication date: November 2, 2023
    Inventors: Matthew Sysak, Brandon Buscaino
  • Patent number: 11762154
    Abstract: A first chip includes a first plurality of optical waveguides exposed at a facet of the first chip. A second chip includes a second plurality of optical waveguides exposed at a facet of the second chip. The second chip includes first and second spacers on opposite sides of the second plurality of optical waveguides. The first and second spacers have respective alignment surfaces oriented substantially parallel to the facet of the second chip at a controlled perpendicular distance away from the facet of the second chip. The second chip is positioned with the alignment surfaces of the first and second spacers contacting the facet of the first chip, and with the second plurality of optical waveguides respectively aligned with the first plurality of optical waveguides. The first and second spacers define and maintain an air gap of at least micrometer-level precision between the first and second pluralities of optical waveguides.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: September 19, 2023
    Assignee: Ayar Labs, Inc.
    Inventors: Manan Raval, Matthew Sysak, Chen Li, Chong Zhang
  • Publication number: 20230291493
    Abstract: An optical distribution network includes a fore-positioned optical multiplexer section that has a plurality of optical inputs and a plurality of intermediate optical outputs. Each of the plurality of optical inputs of the fore-positioned optical multiplexer section receives a respective one of a plurality of input light signals of different wavelengths. The fore-positioned optical multiplexer section multiplexes a unique subset of the plurality of input light signals onto each of the plurality of intermediate optical outputs. The optical distribution network also includes an optical coupler section that has a plurality of optical inputs respectively optically connected to the plurality of intermediate optical outputs of the fore-positioned optical multiplexer section. The optical coupler section distributes a portion of each light signal received at each of the plurality of optical inputs of the optical coupler section to each and every one of a plurality of optical outputs of the optical coupler section.
    Type: Application
    Filed: March 7, 2023
    Publication date: September 14, 2023
    Inventors: Manan Raval, Matthew Sysak, Judson Ryckman, Sidney Buchbinder
  • Publication number: 20230273371
    Abstract: An electro-optical chip includes a plurality of transmit macros, each of which includes an optical waveguide and a plurality of ring resonators positioned along the optical waveguide. An optical distribution network is implemented onboard the electro-optical chip. The optical distribution network has a plurality of optical inputs and a plurality of optical outputs. The optical distribution network conveys a portion of light received at each and every one of the plurality of optical inputs to each of the plurality of optical outputs, such that light conveyed to each of the plurality of optical outputs includes all wavelengths of light conveyed to the plurality of optical inputs. Each of the plurality of optical outputs is optically connected to the optical waveguide in a corresponding one of the plurality of transmit macros. The electro-optical chip is optically connected to a remote optical power supply.
    Type: Application
    Filed: February 27, 2023
    Publication date: August 31, 2023
    Inventors: Manan Raval, Matthew Sysak, Chen Li
  • Publication number: 20230275671
    Abstract: An electro-optical chip includes a plurality of transmit macros, each of which includes an optical waveguide and a plurality of ring resonators positioned along the optical waveguide. An optical distribution network is implemented onboard the electro-optical chip and includes a plurality of optical inputs and a plurality of optical outputs. The optical distribution network conveys a portion of light received at a subset of the plurality of optical inputs to one or more of the plurality of optical outputs, such that light conveyed to said one or more of the plurality of optical outputs includes wavelengths of light conveyed to said subset of the plurality of optical inputs. The subset of the plurality of optical inputs includes at least two of the plurality of optical inputs. Each of the plurality of optical outputs is optically connected to the optical waveguide in a corresponding one of the plurality of transmit macros.
    Type: Application
    Filed: February 27, 2023
    Publication date: August 31, 2023
    Inventors: Manan Raval, Matthew Sysak, Chen Li
  • Publication number: 20230224047
    Abstract: An optical power supply includes a plurality of lasers in a laser array. Each of the plurality of lasers is configured to generate a separate beam of continuous wave laser light. The optical power supply includes a temperature sensor that acquires a temperature associated with the laser array. The optical power supply includes a digital controller that receives notification of the temperature from the temperature senor. The optical power supply includes an optical power adjuster controlled by the digital controller. The optical power adjuster adjusts an optical power level of one or more beams of continuous wave laser light generated by the plurality of lasers to produce an optical power encoding that conveys information about the temperature associated with the laser array as acquired by the temperature sensor. An electro-optic chip receives the beams of continuous wave laser light from the optical power supply and decodes the optical power encoding.
    Type: Application
    Filed: January 10, 2023
    Publication date: July 13, 2023
    Inventors: Matthew Sysak, Chen Sun, Shahab Ardalan, Daniel Jeong, Songtao Liu
  • Patent number: 11700068
    Abstract: An optical data communication system includes an optical power supply and an electro-optical chip. The optical power supply includes a laser that generates laser light at a single wavelength. A comb generator receives the light at the single wavelength and generates multiple wavelengths of continuous wave light from laser light at the single wavelength. The multiple wavelengths of continuous wave light are provided as light input to the electro-optical chip. The electro-optical chip includes at least one transmit macro that receives the multiple wavelengths of continuous wave light and that modulates one or more of the multiple wavelengths of continuous wave light to generate modulated light signals that convey digital data.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: July 11, 2023
    Assignee: Ayar Labs, Inc.
    Inventors: Matthew Sysak, Brandon Buscaino
  • Publication number: 20230179305
    Abstract: An optical data communication system includes a plurality of resonator structures and a laser array that includes a plurality of lasers optically connected to the plurality of resonator structures. Each resonator structure has a respective free spectral wavelength range and a respective resonance wavelength. A maximum difference in resonance wavelength between any two resonator structures in the plurality of resonator structures is less than a minimum free spectral wavelength range of any resonator structure in the plurality of resonator structures. Each laser in the plurality of lasers is configured to generate continuous wave light having a respective wavelength. The laser array has a central wavelength. A variability of the central wavelength is greater than a minimum difference in resonance wavelength between any two spectrally neighboring resonator structures in the plurality of resonator structures.
    Type: Application
    Filed: January 31, 2023
    Publication date: June 8, 2023
    Inventor: Matthew Sysak
  • Patent number: 11569914
    Abstract: An optical data communication system includes a plurality of resonator structures and a laser array that includes a plurality of lasers optically connected to the plurality of resonator structures. Each resonator structure has a respective free spectral wavelength range and a respective resonance wavelength. A maximum difference in resonance wavelength between any two resonator structures in the plurality of resonator structures is less than a minimum free spectral wavelength range of any resonator structure in the plurality of resonator structures. Each laser in the plurality of lasers is configured to generate continuous wave light having a respective wavelength. The laser array has a central wavelength. A variability of the central wavelength is greater than a minimum difference in resonance wavelength between any two spectrally neighboring resonator structures in the plurality of resonator structures.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: January 31, 2023
    Assignee: Ayar Labs, Inc.
    Inventor: Matthew Sysak
  • Publication number: 20220069915
    Abstract: An optical data communication system includes a plurality of resonator structures and a laser array that includes a plurality of lasers optically connected to the plurality of resonator structures. Each resonator structure has a respective free spectral wavelength range and a respective resonance wavelength. A maximum difference in resonance wavelength between any two resonator structures in the plurality of resonator structures is less than a minimum free spectral wavelength range of any resonator structure in the plurality of resonator structures. Each laser in the plurality of lasers is configured to generate continuous wave light having a respective wavelength. The laser array has a central wavelength. A variability of the central wavelength is greater than a minimum difference in resonance wavelength between any two spectrally neighboring resonator structures in the plurality of resonator structures.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 3, 2022
    Inventor: Matthew Sysak
  • Publication number: 20220035107
    Abstract: A first chip includes a first plurality of optical waveguides exposed at a facet of the first chip. A second chip includes a second plurality of optical waveguides exposed at a facet of the second chip. The second chip includes first and second spacers on opposite sides of the second plurality of optical waveguides. The first and second spacers have respective alignment surfaces oriented substantially parallel to the facet of the second chip at a controlled perpendicular distance away from the facet of the second chip. The second chip is positioned with the alignment surfaces of the first and second spacers contacting the facet of the first chip, and with the second plurality of optical waveguides respectively aligned with the first plurality of optical waveguides. The first and second spacers define and maintain an air gap of at least micrometer-level precision between the first and second pluralities of optical waveguides.
    Type: Application
    Filed: July 26, 2021
    Publication date: February 3, 2022
    Inventors: Manan Raval, Matthew Sysak, Chen Li, Chong Zhang
  • Publication number: 20210359766
    Abstract: An optical data communication system includes an optical power supply and an electro-optical chip. The optical power supply includes a laser that generates laser light at a single wavelength. A comb generator receives the light at the single wavelength and generates multiple wavelengths of continuous wave light from laser light at the single wavelength. The multiple wavelengths of continuous wave light are provided as light input to the electro-optical chip. The electro-optical chip includes at least one transmit macro that receives the multiple wavelengths of continuous wave light and that modulates one or more of the multiple wavelengths of continuous wave light to generate modulated light signals that convey digital data.
    Type: Application
    Filed: May 14, 2021
    Publication date: November 18, 2021
    Inventors: Matthew Sysak, Brandon Buscaino
  • Patent number: 10109981
    Abstract: Monolithic asymmetric optical waveguide grating resonators including an asymmetric resonant grating are disposed in a waveguide. A first grating strength is provided along a first grating length, and a second grating strength, higher than the first grating strength, is provided along a second grating length. In advantageous embodiments, the effective refractive index along first grating length is substantially matched to the effective refractive index along second grating length through proper design of waveguide and grating parameters. A well-matched effective index of refraction may permit the resonant grating to operate in a highly asymmetric single longitudinal mode (SLM). In further embodiments, an asymmetric monolithic DFB laser diode includes front and back grating sections having waveguide and grating parameters for highly asymmetric operation.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: October 23, 2018
    Assignee: Intel Corporation
    Inventors: Matthew Sysak, Jock Bovington
  • Publication number: 20160380407
    Abstract: Monolithic asymmetric optical waveguide grating resonators including an asymmetric resonant grating are disposed in a waveguide. A first grating strength is provided along a first grating length, and a second grating strength, higher than the first grating strength, is provided along a second grating length. In advantageous embodiments, the effective refractive index along first grating length is substantially matched to the effective refractive index along second grating length through proper design of waveguide and grating parameters. A well-matched effective index of refraction may permit the resonant grating to operate in a highly asymmetric single longitudinal mode (SLM). In further embodiments, an asymmetric monolithic DFB laser diode includes front and back grating sections having waveguide and grating parameters for highly asymmetric operation.
    Type: Application
    Filed: December 27, 2013
    Publication date: December 29, 2016
    Inventors: Matthew SYSAK, Jock BOVINGTON
  • Patent number: 9252118
    Abstract: A semiconductor metallurgy includes a ratio of germanium and palladium that provides low contact resistance to both n-type material and p-type material. The metallurgy allows for a contact that does not include gold and is compatible with mass-production CMOS techniques. The ratio of germanium and palladium can be achieved by stacking layers of the materials and annealing the stack, or simultaneously depositing the germanium and palladium on the material where the contact is to be manufactured.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: February 2, 2016
    Assignees: INTEL CORPORATION, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Siddharth Jain, John Bowers, Matthew Sysak, John Heck, Ran Feldesh, Richard Jones, Yoel Shetrit, Michael Geva
  • Publication number: 20140050243
    Abstract: A semiconductor metallurgy includes a ratio of germanium and palladium that provides low contact resistance to both n-type material and p-type material. The metallurgy allows for a contact that does not include gold and is compatible with mass-production CMOS techniques. The ratio of germanium and palladium can be achieved by stacking layers of the materials and annealing the stack, or simultaneously depositing the germanium and palladium on the material where the contact is to be manufactured.
    Type: Application
    Filed: December 22, 2011
    Publication date: February 20, 2014
    Inventors: Siddharth Jain, John Bowers, Matthew Sysak, John Heck, Ran Feldesh, Richard Jones, Yoel Shetrit, Michael Geva
  • Patent number: 8111729
    Abstract: A multi-wavelength array of hybrid silicon lasers and a method of fabricating such a device. The method may include providing a silicon-on-insulator wafer; patterning waveguides in the silicon-on-insulator wafer; providing a III-V wafer comprising multiple layers; applying quantum well intermixing to obtain a plurality of regions of different bandgaps within the III-V wafer; and bonding the silicon on insulator wafer with the III-V wafer.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: February 7, 2012
    Assignee: Intel Corporation
    Inventors: Matthew Sysak, Richard Jones
  • Patent number: 7639719
    Abstract: An optimized structure for heat dissipation is provided that may include two types of thermal shunts. The first type of thermal shunt employed involves using p and n metal contact layers to conduct heat away from the active region and into the silicon substrate. The second type of thermal shunt involves etching and backfilling a portion of the silicon wafer with poly-silicon to conduct heat to the silicon substrate.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: December 29, 2009
    Assignee: Intel Corporation
    Inventors: Alexander Fang, Richard Jones, Hyundai Park, Matthew Sysak
  • Publication number: 20090245316
    Abstract: A multi-wavelength array of hybrid silicon lasers and a method of fabricating such a device. The method may include providing a silicon-on-insulator wafer; patterning waveguides in the silicon-on-insulator wafer; providing a III-V wafer comprising multiple layers; applying quantum well intermixing to obtain a plurality of regions of different bandgaps within the III-V wafer; and bonding the silicon on insulator wafer with the III-V wafer.
    Type: Application
    Filed: March 25, 2008
    Publication date: October 1, 2009
    Inventors: Matthew Sysak, Richard Jones