Patents by Inventor Matthias Baenninger

Matthias Baenninger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11675654
    Abstract: Embodiments of the present disclosure include an error recovery method comprising detecting a computing error, restarting a first artificial intelligence processor of a plurality of artificial intelligence processors processing a data set, and loading a model in the artificial intelligence processor, wherein the model corresponds to a same model processed by the plurality of artificial intelligence processors during a previous processing iteration by the plurality of artificial intelligence processors on data from the data set.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: June 13, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Bharadwaj Pudipeddi, Maral Mesmakhosroshahi, Jinwen Xi, Saurabh M. Kulkarni, Marc Tremblay, Matthias Baenninger, Nuno Claudino Pereira Lopes
  • Publication number: 20220107864
    Abstract: Embodiments of the present disclosure include an error recovery method comprising detecting a computing error, restarting a first artificial intelligence processor of a plurality of artificial intelligence processors processing a data set, and loading a model in the artificial intelligence processor, wherein the model corresponds to a same model processed by the plurality of artificial intelligence processors during a previous processing iteration by the plurality of artificial intelligence processors on data from the data set.
    Type: Application
    Filed: December 16, 2021
    Publication date: April 7, 2022
    Inventors: Bharadwaj PUDIPEDDI, Maral MESMAKHOSROSHAHI, Jinwen XI, Saurabh M. KULKARNI, Marc TREMBLAY, Matthias BAENNINGER, Nuno CLAUDINO PEREIRA LOPES
  • Patent number: 11226859
    Abstract: Embodiments of the present disclosure include an error recovery method comprising detecting a computing error, restarting a first artificial intelligence processor of a plurality of artificial intelligence processors processing a data set, and loading a model in the artificial intelligence processor, wherein the model corresponds to a same model processed by the plurality of artificial intelligence processors during a previous processing iteration by the plurality of artificial intelligence processors on data from the data set.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: January 18, 2022
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Bharadwaj Pudipeddi, Maral Mesmakhosroshahi, Jinwen Xi, Saurabh M. Kulkarni, Marc Tremblay, Matthias Baenninger, Nuno Claudino Pereira Lopes
  • Publication number: 20210232451
    Abstract: Embodiments of the present disclosure include an error recovery method comprising detecting a computing error, restarting a first artificial intelligence processor of a plurality of artificial intelligence processors processing a data set, and loading a model in the artificial intelligence processor, wherein the model corresponds to a same model processed by the plurality of artificial intelligence processors during a previous processing iteration by the plurality of artificial intelligence processors on data from the data set.
    Type: Application
    Filed: March 27, 2020
    Publication date: July 29, 2021
    Inventors: Bharadwaj PUDIPEDDI, Maral MESMAKHOSROSHAHI, Jinwen XI, Saurabh M. KULKARNI, Marc TREMBLAY, Matthias BAENNINGER, Nuno CLAUDINO PEREIRA LOPES
  • Patent number: 10777570
    Abstract: An annular dielectric spacer can be formed at a level of a joint-level dielectric material layer between vertically neighboring pairs of alternating stacks of insulating layers and spacer material layers. After formation of a memory opening through multiple alternating stacks and formation of a memory film therein, an anisotropic etch can be performed to remove a horizontal bottom portion of the memory film. The annular dielectric spacer can protect underlying portions of the memory film during the anisotropic etch. In addition, a silicon nitride barrier may be employed to suppress hydrogen diffusion at an edge region of peripheral devices.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: September 15, 2020
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Tadashi Nakamura, Jin Liu, Kazuya Tokunaga, Marika Gunji-Yoneoka, Matthias Baenninger, Hiroyuki Kinoshita, Murshed Chowdhury, Jiyin Xu
  • Patent number: 10381083
    Abstract: A memory device and associated techniques avoid a disturb of a select gate transistor during an erase operation for memory cells in a string. During the erase operation, a channel potential gradient near the select gate transistors is reduced when the voltages of the bit line and the substrate are suitably controlled. In one approach, the voltage of the substrate at a source end of the memory string is increased to an intermediate level first before being increased to the erase voltage threshold level while the voltage of the bit line is held at a reference voltage level to delay floating the voltage of the bit line. Another approach builds off the first approach by temporarily decreasing the voltage of the bit line to a negative level before letting the voltage of the bit line to float at the same time as the voltage of the substrate is increased to the erase voltage threshold level.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: August 13, 2019
    Assignee: SanDisk Technologies LLC
    Inventors: Xiang Yang, Kun-Huan Shih, Matthias Baenninger, Huai-Yuan Tseng, Dengtao Zhao, Deepanshu Dutta
  • Publication number: 20180277567
    Abstract: An annular dielectric spacer can be formed at a level of a joint-level dielectric material layer between vertically neighboring pairs of alternating stacks of insulating layers and spacer material layers. After formation of a memory opening through multiple alternating stacks and formation of a memory film therein, an anisotropic etch can be performed to remove a horizontal bottom portion of the memory film. The annular dielectric spacer can protect underlying portions of the memory film during the anisotropic etch. In addition, a silicon nitride barrier may be employed to suppress hydrogen diffusion at an edge region of peripheral devices.
    Type: Application
    Filed: May 25, 2018
    Publication date: September 27, 2018
    Inventors: Tadashi Nakamura, Jin Liu, Kazuya Tokunaga, Marika Gunji-Yoneoka, Matthias Baenninger, Hiroyuki Kinoshita, Murshed Chowdhury, Jiyin Xu
  • Patent number: 9991280
    Abstract: An annular dielectric spacer can be formed at a level of a joint-level dielectric material layer between vertically neighboring pairs of alternating stacks of insulating layers and spacer material layers. After formation of a memory opening through multiple alternating stacks and formation of a memory film therein, an anisotropic etch can be performed to remove a horizontal bottom portion of the memory film. The annular dielectric spacer can protect underlying portions of the memory film during the anisotropic etch. In addition, a silicon nitride barrier may be employed to suppress hydrogen diffusion at an edge region of peripheral devices.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: June 5, 2018
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Tadashi Nakamura, Jin Liu, Kazuya Tokunaga, Marika Gunji-Yoneoka, Matthias Baenninger, Hiroyuki Kinoshita, Murshed Chowdhury, Jiyin Xu, Dai Iwata, Hiroyuki Ogawa, Kazutaka Yoshizawa, Yasuaki Yonemochi
  • Patent number: 9870945
    Abstract: A stack of alternating layers comprising first epitaxial semiconductor layers and second epitaxial semiconductor layers is formed over a single crystalline substrate. The first and second epitaxial semiconductor layers are in epitaxial alignment with a crystal structure of the single crystalline substrate. The first epitaxial semiconductor layers include a first single crystalline semiconductor material, and the second epitaxial semiconductor layers include a second single crystalline semiconductor material that is different from the first single crystalline semiconductor material. A backside contact opening is formed through the stack, and backside cavities are formed by removing the first epitaxial semiconductor layers selective to the second epitaxial semiconductor layers. A stack of alternating layers including insulating layers and electrically conductive layers is formed. Each insulating layer contains a dielectric material portion deposited within a respective backside cavity.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: January 16, 2018
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Jayavel Pachamuthu, Matthias Baenninger, Stephen Shi, Johann Alsmeier, Henry Chien
  • Patent number: 9799671
    Abstract: Dielectric degradation and electrical shorts due to fluorine radical generation from metallic electrically conductive lines in a three-dimensional memory device can be reduced by forming composite electrically conductive layers and/or using of a metal oxide material for an insulating spacer for backside contact trenches. Each composite electrically conductive layer includes a doped semiconductor material portion in proximity to memory stack structures and a metallic material portion in proximity to a backside contact trench. Fluorine generated from the metallic material layers can escape readily through the backside contact trench. The semiconductor material portions can reduce mechanical stress.
    Type: Grant
    Filed: April 7, 2015
    Date of Patent: October 24, 2017
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Jayavel Pachamuthu, Matthias Baenninger, Stephen Shi, Johann Alsmeier
  • Patent number: 9748266
    Abstract: A gate dielectric layer including a tunneling gate dielectric layer, a charge trapping gate dielectric layer, and a cap gate dielectric layer is formed on a horizontal semiconductor channel. An alternating stack of insulating layers and spacer material layers is formed over the gate dielectric layer. The spacer material layers are formed as, or are subsequently replaced with, electrically conducive layers. Memory stack structures are formed through the alternating stack and the gate dielectric layer. Electrical charges can be injected into the charge trapping gate dielectric layer from the horizontal semiconductor channel to program the threshold voltage of a select field effect transistor employing a bottommost electrically conductive layer as a select gate electrode. The programmable threshold voltage can be advantageously employed to provide enhanced electrical isolation among word lines.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: August 29, 2017
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Ashish Baraskar, Yanli Zhang, Liang Pang, Ching-Huang Lu, Matthias Baenninger, Yingda Dong
  • Publication number: 20170236835
    Abstract: An annular dielectric spacer can be formed at a level of a joint-level dielectric material layer between vertically neighboring pairs of alternating stacks of insulating layers and spacer material layers. After formation of a memory opening through multiple alternating stacks and formation of a memory film therein, an anisotropic etch can be performed to remove a horizontal bottom portion of the memory film. The annular dielectric spacer can protect underlying portions of the memory film during the anisotropic etch. In addition, a silicon nitride barrier may be employed to suppress hydrogen diffusion at an edge region of peripheral devices.
    Type: Application
    Filed: February 16, 2017
    Publication date: August 17, 2017
    Inventors: Tadashi NAKAMURA, Jin LIU, Kazuya TOKUNAGA, Marika GUNJI-YONEOKA, Matthias BAENNINGER, Hiroyuki KINOSHITA, Murshed CHOWDHURY, Jiyin XU, Dai IWATA, Hiroyuki OGAWA, Kazutaka YOSHIZAWA, Yasuaki YONEMOCHI
  • Patent number: 9698152
    Abstract: A contact via structure can include a ruthenium portion formed by selective deposition of ruthenium on a semiconductor surface at the bottom of a contact trench. The ruthenium-containing portion can reduce contact resistance at the interface with an underlying doped semiconductor region. At least one conductive material portion can be formed in the remaining volume of the contact trench to form a contact via structure. Alternatively or additionally, a contact via structure can include a tensile stress-generating portion and a conductive material portion. In case the contact via structure is formed through an alternating stack of insulating layers and electrically conductive layers that include a compressive stress-generating material, the tensile stress-generating portion can at least partially cancel the compressive stress generated by the electrically conductive layers. The conductive material portion of the contact via structure can include a metallic material or a doped semiconductor material.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: July 4, 2017
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Somesh Peri, Sateesh Koka, Raghuveer S. Makala, Rahul Sharangpani, Matthias Baenninger, Jayavel Pachamuthu, Johann Alsmeier
  • Patent number: 9553146
    Abstract: A monolithic three dimensional NAND string includes a semiconductor channel, where at least one end portion of the semiconductor channel extending substantially perpendicular to a major surface of a substrate, a plurality of control gate electrodes extending substantially parallel to the major surface of the substrate, an interlevel insulating layer located between adjacent control gate electrodes, a blocking dielectric layer located in contact with the plurality of control gate electrodes and an interlevel insulating layer, a charge storage layer located at least partially in contact with the blocking dielectric layer, and a tunnel dielectric located between the charge storage layer and the semiconductor channel. The charge storage layer has a curved profile.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: January 24, 2017
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Yanli Zhang, Matthias Baenninger, Akira Matsudaira, Yao-Sheng Lee, Johann Alsmeier
  • Publication number: 20160300848
    Abstract: Dielectric degradation and electrical shorts due to fluorine radical generation from metallic electrically conductive lines in a three-dimensional memory device can be reduced by forming composite electrically conductive layers and/or use of a metal oxide material for an insulating spacer for backside contact trenches. Each composite electrically conductive layer includes a doped semiconductor material portion in proximity to memory stack structures and a metallic material portion in proximity to a backside contact trench. Fluorine generated from the metallic material layers can escape readily through the backside contact trench. The semiconductor material portions can reduce mechanical stress.
    Type: Application
    Filed: April 7, 2015
    Publication date: October 13, 2016
    Inventors: Jayavel PACHAMUTHU, Matthias BAENNINGER, Stephen SHI, Johann ALSMEIER
  • Publication number: 20160268209
    Abstract: A stack of alternating layers comprising first epitaxial semiconductor layers and second epitaxial semiconductor layers is formed over a single crystalline substrate. The first and second epitaxial semiconductor layers are in epitaxial alignment with a crystal structure of the single crystalline substrate. The first epitaxial semiconductor layers include a first single crystalline semiconductor material, and the second epitaxial semiconductor layers include a second single crystalline semiconductor material that is different from the first single crystalline semiconductor material. A backside contact opening is formed through the stack, and backside cavities are formed by removing the first epitaxial semiconductor layers selective to the second epitaxial semiconductor layers. A stack of alternating layers including insulating layers and electrically conductive layers is formed. Each insulating layer contains a dielectric material portion deposited within a respective backside cavity.
    Type: Application
    Filed: March 10, 2015
    Publication date: September 15, 2016
    Inventors: Jayavel PACHAMUTHU, Matthias BAENNINGER, Stephen SHI, Johann ALSMEIER, Henry CHIEN
  • Patent number: 9419135
    Abstract: A monolithic three dimensional NAND string includes a plurality of control gate electrodes extending substantially parallel to a major surface of a substrate, and at least one trench extending substantially perpendicular to the major surface of the substrate. The trench is filled with at least a first trench material and a second trench material. The first trench material includes a material under a first magnitude of a first stress type, and the second trench material includes a material under no stress, a second stress type opposite the first stress type, or a second magnitude of the first stress type lower than the first magnitude of the first stress type to offset warpage of the substrate due to the stress imposed by at least one of the first trench material or the plurality of control gate electrodes on the substrate.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: August 16, 2016
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Matthias Baenninger, Jayavel Pachamuthu, Johann Alsmeier
  • Publication number: 20160141419
    Abstract: A monolithic three dimensional NAND string includes a plurality of control gate electrodes extending substantially parallel to a major surface of a substrate, and at least one trench extending substantially perpendicular to the major surface of the substrate. The trench is filled with at least a first trench material and a second trench material. The first trench material includes a material under a first magnitude of a first stress type, and the second trench material includes a material under no stress, a second stress type opposite the first stress type, or a second magnitude of the first stress type lower than the first magnitude of the first stress type to offset warpage of the substrate due to the stress imposed by at least one of the first trench material or the plurality of control gate electrodes on the substrate.
    Type: Application
    Filed: November 13, 2014
    Publication date: May 19, 2016
    Inventors: Matthias BAENNINGER, Jayavel PACHAMUTHU, Johann ALSMEIER
  • Publication number: 20160141294
    Abstract: A contact via structure can include a ruthenium portion formed by selective deposition of ruthenium on a semiconductor surface at the bottom of a contact trench. The ruthenium-containing portion can reduce contact resistance at the interface with an underlying doped semiconductor region. At least one conductive material portion can be formed in the remaining volume of the contact trench to form a contact via structure. Alternatively or additionally, a contact via structure can include a tensile stress-generating portion and a conductive material portion. In case the contact via structure is formed through an alternating stack of insulating layers and electrically conductive layers that include a compressive stress-generating material, the tensile stress-generating portion can at least partially cancel the compressive stress generated by the electrically conductive layers. The conductive material portion of the contact via structure can include a metallic material or a doped semiconductor material.
    Type: Application
    Filed: October 29, 2015
    Publication date: May 19, 2016
    Inventors: Somesh Peri, Sateesh Koka, Raghuveer S. Makala, Rahul Sharangpani, Matthias Baenninger, Jayavel Pachamuthu, Johann Alsmeier
  • Publication number: 20150357413
    Abstract: A monolithic three dimensional NAND string includes a semiconductor channel, where at least one end portion of the semiconductor channel extending substantially perpendicular to a major surface of a substrate, a plurality of control gate electrodes extending substantially parallel to the major surface of the substrate, an interlevel insulating layer located between adjacent control gate electrodes, a blocking dielectric layer located in contact with the plurality of control gate electrodes and an interlevel insulating layer, a charge storage layer located at least partially in contact with the blocking dielectric layer, and a tunnel dielectric located between the charge storage layer and the semiconductor channel. The charge storage layer has a curved profile.
    Type: Application
    Filed: June 5, 2014
    Publication date: December 10, 2015
    Applicant: SanDisk Technologies Inc.
    Inventors: Yanli Zhang, Matthias Baenninger, Akira Matsudaira, Yao-Sheng Lee, Johann Alsmeier