Patents by Inventor Matthias BLAICHER

Matthias BLAICHER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230367075
    Abstract: The invention relates to an optical waveguide component and to a method for the production thereof.
    Type: Application
    Filed: September 24, 2021
    Publication date: November 16, 2023
    Applicant: Karlsruher Institut für Technologie
    Inventors: Matthias Blaicher, Aleksandar Nesic, Pascal Maier, Andreas Hofmann, Yilin Xu, Christian Koos
  • Publication number: 20230213703
    Abstract: The invention relates to an assembly for optical coupling and for mode-selective separation or overlaying of optical fields, to the use thereof and to a method for producing a waveguide-based optical coupling element (10) which is designed for mode-selective separation or overlaying of optical fields at a further optical coupling point (410) of an optical component (400).
    Type: Application
    Filed: April 8, 2021
    Publication date: July 6, 2023
    Applicant: Karlsruher Institut für Technologie
    Inventors: Aleksandar Nesic, Matthias Blaicher, Christian Koos
  • Publication number: 20230120780
    Abstract: The invention relates to a method and to an assembly (200) for localizing an optical coupling point (11) and to a method for producing a microstructure (100) at the optical coupling point (11).
    Type: Application
    Filed: March 4, 2021
    Publication date: April 20, 2023
    Applicant: Karlsruher Institut für Technologie
    Inventors: Matthias Blaicher, Philipp-Immanuel Dietrich, Christian Koos
  • Patent number: 11630394
    Abstract: Disclosed is a method for lithographically producing a target structure on a non-planar initial structure by exposing a photoresist by means of a lithography beam. In the inventive method, the topography of a surface of the non-planar initial structure is detected. A test parameter for the lithography beam is used and an interaction of the lithography beam with the initial structure and the resultant change in the lithography beam and/or the target structure to be produced are determined. A correction parameter for the lithography beam is determined such that the change in the lithography beam and/or the target structure to be produced that is caused by the interaction of the lithography beam with the initial structure is reduced. The desired target structure on the initial structure is produced by exposing the photoresist by means of the lithography beam using the correction parameter.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: April 18, 2023
    Assignee: Karlsruhe Institute of Technology
    Inventors: Christian Koos, Tobias Hoose, Philipp Dietrich, Matthias Blaicher, Maria Laura Gödecke, Nicole Lindenmann
  • Publication number: 20220350239
    Abstract: Method (and apparatus) for producing a 3D target structure in lithographic material. Focus region of a laser writing beam travels through a scanning manifold through the lithographic material. In the focus region of the laser writing beam, an exposure dose is irradiated into the lithographic material, and a structure region is locally defined. At least one exposure data set which represents a local exposure dose for the scan manifold as a function of location is determined. A structure which approximates the target structure is defined based on at least one exposure data set. This structure is analyzed and at least one analysis data set which represents the analyzed structure is determined. Deviation data set which represents deviations of the already defined structure from the target structure is determined. At least one correction exposure data set is determined. Correction structure based on the at least one correction exposure data set is defined.
    Type: Application
    Filed: April 4, 2022
    Publication date: November 3, 2022
    Applicant: Nanoscribe Holding GmbH
    Inventors: Nicole LINDENMANN, Matthias BLAICHER, Jörg HOFFMANN
  • Publication number: 20220011677
    Abstract: An optical system and a method for producing it is disclosed. The optical system has at least two separate optical components and an optical connection between them. In the inventive method, first and second optical component are provided, each having respective beam profiles. An arrangement of the first and second optical components and the form and target position of at least one beam-shaping element are specified. The beam-shaping element is produced using a three-dimensional direct-writing lithography method in situ at the target position to thereby obtain an optical component supplemented by the beam-shaping element. The supplemented optical component is placed and fixed on common base plate to thereby obtain the optical system. The optical systems produced with the present method can be used in optical data transfer, measurement technology and sensors, life sciences and medical technology, or optical signal processing.
    Type: Application
    Filed: September 28, 2021
    Publication date: January 13, 2022
    Inventors: Philipp-Immanuel Dietrich, Christian Koos, Matthias Blaicher, Ingo Reuter, Yilin Xu
  • Publication number: 20210405537
    Abstract: Disclosed is a method for lithographically producing a target structure on a non-planar initial structure by exposing a photoresist by means of a lithography beam. In the inventive method, the topography of a surface of the non-planar initial structure is detected. A test parameter for the lithography beam is used and an interaction of the lithography beam with the initial structure and the resultant change in the lithography beam and/or the target structure to be produced are determined. A correction parameter for the lithography beam is determined such that the change in the lithography beam and/or the target structure to be produced that is caused by the interaction of the lithography beam with the initial structure is reduced. The desired target structure on the initial structure is produced by exposing the photoresist by means of the lithography beam using the correction parameter.
    Type: Application
    Filed: September 10, 2021
    Publication date: December 30, 2021
    Inventors: Christian Koos, Tobias Hoose, Philipp Dietrich, Matthias Blaicher, Maria Laura Gödecke, Nicole Lindenmann
  • Patent number: 11169446
    Abstract: An optical system and a method for producing it is disclosed. The optical system has at least two separate optical components and an optical connection between them. In the inventive method, first and second optical component are provided, each having respective beam profiles. An arrangement of the first and second optical components and the form and target position of at least one beam-shaping element are specified. The beam-shaping element is produced using a three-dimensional direct-writing lithography method in situ at the target position to thereby obtain an optical component supplemented by the beam-shaping element. The supplemented optical component is placed and fixed on common base plate to thereby obtain the optical system. The optical systems produced with the present method can be used in optical data transfer, measurement technology and sensors, life sciences and medical technology, or optical signal processing.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: November 9, 2021
    Assignee: Karlsruhe Institute of Technology
    Inventors: Philipp-Immanuel Dietrich, Christian Koos, Matthias Blaicher, Ingo Reuter, Yilin Xu
  • Patent number: 11143966
    Abstract: Disclosed is a method for lithographically producing a target structure on a non-planar initial structure by exposing a photoresist by means of a lithography beam. In the inventive method, the topography of a surface of the non-planar initial structure is detected. A test parameter for the lithography beam is used and an interaction of the lithography beam with the initial structure and the resultant change in the lithography beam and/or the target structure to be produced are determined. A correction parameter for the lithography beam is determined such that the change in the lithography beam and/or the target structure to be produced that is caused by the interaction of the lithography beam with the initial structure is reduced. The desired target structure on the initial structure is produced by exposing the photoresist by means of the lithography beam using the correction parameter.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: October 12, 2021
    Assignee: Karlsruhe Institute of Technology
    Inventors: Christian Koos, Tobias Hoose, Philipp Dietrich, Matthias Blaicher, Maria Laura Gödecke, Nicole Lindenmann
  • Publication number: 20210096152
    Abstract: The present invention relates to a micro-optomechanical system (500) and to a method for the production thereof.
    Type: Application
    Filed: December 4, 2018
    Publication date: April 1, 2021
    Applicant: Karlsruher Institut für Technologie
    Inventors: Philipp-Immanuel Dietrich, Gerald Goering, Matthias Blaicher, Mareike Trappen, Hendrik Hölscher, Christian Koos
  • Publication number: 20190258175
    Abstract: An optical system and a method for producing it is disclosed. The optical system has at least two separate optical components and an optical connection between them. In the inventive method, first and second optical component are provided, each having respective beam profiles. An arrangement of the first and second optical components and the form and target position of at least one beam-shaping element are specified. The beam-shaping element is produced using a three-dimensional direct-writing lithography method in situ at the target position to thereby obtain an optical component supplemented by the beam-shaping element. The supplemented optical component is placed and fixed on common base plate to thereby obtain the optical system. The optical systems produced with the present method can be used in optical data transfer, measurement technology and sensors, life sciences and medical technology, or optical signal processing.
    Type: Application
    Filed: April 30, 2019
    Publication date: August 22, 2019
    Inventors: Philipp-Immanuel Dietrich, Christian Koos, Matthias Blaicher, Ingo Reuter, Yilin Xu
  • Publication number: 20190163067
    Abstract: Disclosed is a method for lithographically producing a target structure on a non-planar initial structure by exposing a photoresist by means of a lithography beam. In the inventive method, the topography of a surface of the non-planar initial structure is detected. A test parameter for the lithography beam is used and an interaction of the lithography beam with the initial structure and the resultant change in the lithography beam and/or the target structure to be produced are determined. A correction parameter for the lithography beam is determined such that the change in the lithography beam and/or the target structure to be produced that is caused by the interaction of the lithography beam with the initial structure is reduced. The desired target structure on the initial structure is produced by exposing the photoresist by means of the lithography beam using the correction parameter.
    Type: Application
    Filed: January 31, 2019
    Publication date: May 30, 2019
    Inventors: Christian Koos, Tobias Hoose, Philipp Dietrich, Matthias Blaicher, Maria Laura Gödecke, Nicole Lindenmann
  • Patent number: 9678278
    Abstract: The present invention is related to an integrated optical circuit, in particular, to an optical-field writable array, as well as to methods for its manufacturing and reconfiguring. The integrated optical circuit comprises at least one nanophotonic device and at least one photonic wire, wherein the nanophotonic device comprises a substrate equipped with at least one reception for at least one external connector, wherein the reception is coupled to at least one connector waveguide, and at least one set of nano-optic components, wherein the nano-optic component is one of a nanophotonic waveguide or a nanophotonic component, wherein the nano-photonic component is nano-optically coupled to at least one nanophotonic waveguide, wherein at least one of the nanophotonic waveguides is selectively coupleable to at least one of the connector waveguides, wherein the photonic wire connects at least one of the nanophotonic waveguides to at least one of the connector waveguides.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: June 13, 2017
    Assignee: Karlsruher Institut für Technologie
    Inventors: Matthias Blaicher, Wolfram Pernice, Martin Wegener
  • Publication number: 20150309260
    Abstract: The present invention is related to an integrated optical circuit, in particular, to an optical-field writable array, as well as to methods for its manufacturing and reconfiguring. The integrated optical circuit comprises at least one nanophotonic device and at least one photonic wire, wherein the nanophotonic device comprises a substrate equipped with at least one reception for at least one external connector, wherein the reception is coupled to at least one connector waveguide, and at least one set of nano-optic components, wherein the nano-optic component is one of a nanophotonic waveguide or a nanophotonic component, wherein the nano-photonic component is nano-optically coupled to at least one nanophotonic waveguide, wherein at least one of the nanophotonic waveguides is selectively coupleable to at least one of the connector waveguides, wherein the photonic wire connects at least one of the nanophotonic waveguides to at least one of the connector waveguides.
    Type: Application
    Filed: April 28, 2015
    Publication date: October 29, 2015
    Applicant: Karlsruher Institut für Technologie
    Inventors: Matthias BLAICHER, Wolfram PERNICE, Martin WEGENER