Patents by Inventor Matthieu Schwartz

Matthieu Schwartz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9802825
    Abstract: A process for manufacturing SiC wherein the emissions of polluting gases are minimized, by reduction of silicon oxide by an excess of carbon, the process including electrically heating a resistor at the heart of a mixture of raw materials consisting of a carbon-based source chosen from petroleum cokes and a source of silicon, especially a silica having a purity of greater than 95% of SiO2, in order to give rise, at a temperature above 1500° C., to the simplified reaction: SiO2+3C=SiC+2CO (1), wherein the carbon-based source first undergoes a treatment for removing the contained hydrogen, so that its elemental hydrogen content (EHWC) is less than 2% by weight.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: October 31, 2017
    Assignee: SAINT GOBAIN CERAMIC MATERIALS AS
    Inventors: Bruno Aleonard, Simonpietro Di Pierro, Matthieu Schwartz
  • Patent number: 9663406
    Abstract: A method for treating workpieces that consist of porous carbon material with liquid silicon with the formation of silicon carbide, comprising the steps: Preheating porous carbon workpieces under inert gas to the selected operating temperature TB1, feeding liquid silicon to the porous carbon workpieces at an operating pressure pB2 and an operating temperature TB2, and impregnating the porous carbon workpieces with liquid silicon, reaction of the liquid silicon in the workpiece at a temperature TB3 with the formation of silicon carbide that consists of carbon and silicon, gassing the workpiece with inert gas and cooling from the operating temperature TB3 to the conditioning temperature Tk, cooling the workpieces to room temperature, the temperature TB3 being greater than or equal to the temperature TB2, and the workpiece in step d of the method no longer being in contact with liquid silicon outside of the workpiece.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: May 30, 2017
    Assignee: AUDI AG
    Inventors: Andreas Kienzle, Johann Daimer, Rudi Back, Otto Mederie, Matthieu Schwartz, Jens Rosenlocher
  • Publication number: 20160096771
    Abstract: A method includes placing a material including a glass precursor material in contact with a second material and annealing the glass precursor material to form a glass composition in contact with the second material. In an embodiment, annealing is performed at a single temperature. In another embodiment, annealing is performed at a temperature in a range of 750° C. to 1000° C. In a particular embodiment, the glass composition includes a crystalline fraction of at least 30%.
    Type: Application
    Filed: September 24, 2015
    Publication date: April 7, 2016
    Inventors: Matthieu Schwartz, Signo Tadeu Reis, John D. Pietras
  • Publication number: 20140295313
    Abstract: A glass-ceramic seal for ionic transport devices such as solid oxide fuel cell stacks or oxygen transport membrane applications. Preferred embodiments of the present invention comprise glass-ceramic sealant material based on a Barium-Aluminum-Silica system, which exhibits a high enough coefficient of thermal expansion to closely match the overall CTE of a SOFC cell/stack (preferably from about 11 to 12.8 ppm/° C.), good sintering behavior, and a very low residual glass phase (which contributes to the stability of the seal).
    Type: Application
    Filed: March 28, 2014
    Publication date: October 2, 2014
    Applicant: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Signo Tadeu Reis, Matthieu Schwartz, Morteza Zandi, Yeshwanth Narendar
  • Publication number: 20140140915
    Abstract: A process for manufacturing SiC wherein the emissions of polluting gases are minimized, by reduction of silicon oxide by an excess of carbon, the process including electrically heating a resistor at the heart of a mixture of raw materials consisting of a carbon-based source chosen from petroleum cokes and a source of silicon, especially a silica having a purity of greater than 95% of SiO2, in order to give rise, at a temperature above 1500° C., to the simplified reaction: SiO2+3C=SiC+2CO (1), wherein the carbon-based source first undergoes a treatment for removing the contained hydrogen, so that its elemental hydrogen content (EHWC) is less than 2% by weight.
    Type: Application
    Filed: July 3, 2012
    Publication date: May 22, 2014
    Applicant: SOCIETE EUROPEENNE DES PRODUITS REFRACTAIRES
    Inventors: Bruno Aleonard, Simonpietro Di Pierro, Matthieu Schwartz
  • Patent number: 7763224
    Abstract: A method for treating workpieces that consist of porous carbon material with liquid silicon with the formation of silicon carbide, comprising the steps: Preheating porous carbon workpieces under inert gas to the selected operating temperature TB1, feeding liquid silicon to the porous carbon workpieces at an operating pressure pB2 and an operating temperature TB2, and impregnating the porous carbon workpieces with liquid silicon, reaction of the liquid silicon in the workpiece at a temperature TB3 with the formation of silicon carbide that consists of carbon and silicon, gassing the workpiece with inert gas and cooling from the operating temperature TB3 to the conditioning temperature Tk, cooling the workpieces to room temperature, the temperature TB3 being greater than or equal to the temperature TB2, and the workpiece in step d of the method no longer being in contact with liquid silicon outside of the workpiece.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: July 27, 2010
    Assignee: Audi AG
    Inventors: Andreas Kienzle, Johann Daimer, Rudi Beck, Otto Mederle, Matthieu Schwartz, Jens Rosenlöcher
  • Publication number: 20100043699
    Abstract: A method for treating workpieces that consist of porous carbon material with liquid silicon with the formation of silicon carbide, comprising the steps: Preheating porous carbon workpieces under inert gas to the selected operating temperature TB1, feeding liquid silicon to the porous carbon workpieces at an operating pressure pB2 and an operating temperature TB2, and impregnating the porous carbon workpieces with liquid silicon, reaction of the liquid silicon in the workpiece at a temperature TB3 with the formation of silicon carbide that consists of carbon and silicon, gassing the workpiece with inert gas and cooling from the operating temperature TB3 to the conditioning temperature Tk, cooling the workpieces to room temperature, the temperature TB3 being greater than or equal to the temperature TB2, and the workpiece in step d of the method no longer being in contact with liquid silicon outside of the workpiece.
    Type: Application
    Filed: August 20, 2009
    Publication date: February 25, 2010
    Inventors: Andreas Kienzle, Johann Daimer, Rudi Back, Otto Mederie, Matthieu Schwartz, Jens Rosenlocher
  • Publication number: 20080213155
    Abstract: A method for treating workpieces that consist of porous carbon material with liquid silicon with the formation of silicon carbide, comprising the steps: Preheating porous carbon workpieces under inert gas to the selected operating temperature TB1, feeding liquid silicon to the porous carbon workpieces at an operating pressure pB2 and an operating temperature TB2, and impregnating the porous carbon workpieces with liquid silicon, reaction of the liquid silicon in the workpiece at a temperature TB3 with the formation of silicon carbide that consists of carbon and silicon, gassing the workpiece with inert gas and cooling from the operating temperature TB3 to the conditioning temperature Tk, cooling the workpieces to room temperature, the temperature TB3 being greater than or equal to the temperature TB2, and the workpiece in step d of the method no longer being in contact with liquid silicon outside of the workpiece.
    Type: Application
    Filed: March 1, 2007
    Publication date: September 4, 2008
    Applicant: Audi AG
    Inventors: Andreas Kienzle, Johann Daimer, Rudi Beck, Otto Mederle, Matthieu Schwartz, Jens Rosenlocher