Patents by Inventor Maurice LeRoy Strong, III

Maurice LeRoy Strong, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11804693
    Abstract: A method for generating light emission is provided. The method includes providing a transistor element including collector, emitter, and base regions, a quantum cascade region between the base and collector regions, and quantum well structures for interband emission within the base or emitter regions. A waveband controller applies, via first and second electrodes with respect to the collector and base regions, a first electrical signal to control a base-collector junction bias level and select between first and second base-collector bias levels. Selection of the first base-collector bias level causes at least one of the emitter and base regions to produce interband-based light emission having a first wavelength of a first wavelength band. Selection of the second base-collector bias level causes the quantum cascade region to produce intraband-based light emission having a second wavelength of a second wavelength band.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: October 31, 2023
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Gary S. Kanner, Maurice Leroy Strong, III
  • Publication number: 20210296854
    Abstract: A method for generating light emission is provided. The method includes providing a transistor element including collector, emitter, and base regions, a quantum cascade region between the base and collector regions, and quantum well structures for interband emission within the base or emitter regions. A waveband controller applies, via first and second electrodes with respect to the collector and base regions, a first electrical signal to control a base-collector junction bias level and select between first and second base-collector bias levels. Selection of the first base-collector bias level causes at least one of the emitter and base regions to produce interband-based light emission having a first wavelength of a first wavelength band. Selection of the second base-collector bias level causes the quantum cascade region to produce intraband-based light emission having a second wavelength of a second wavelength band.
    Type: Application
    Filed: March 18, 2020
    Publication date: September 23, 2021
    Inventors: Gary S. Kanner, Maurice LeRoy Strong, III
  • Patent number: 7112897
    Abstract: An apparatus in one example comprises a first capacitor component, a second capacitor component, and a switch component. The first capacitor component, the second capacitor component, and the switch component cooperate to maintain an input voltage to a target circuit at or above a cut-off voltage of the target circuit until a power circuit is able to maintain the input voltage of the target circuit at or above the cut-off voltage of the target circuit. The switch component serves to control a flow of current from the first capacitor component to the second capacitor component.
    Type: Grant
    Filed: December 6, 2002
    Date of Patent: September 26, 2006
    Assignee: Northrop Grumman Corporation
    Inventor: Maurice LeRoy Strong, III
  • Patent number: 6127787
    Abstract: A series of arc lamps is ignited sequentially while maintaining a specified voltage on one side of each lamp with dielectric insulation on the high voltage side.
    Type: Grant
    Filed: January 21, 1999
    Date of Patent: October 3, 2000
    Assignee: Northrop Grumman Corporation
    Inventors: Maurice LeRoy Strong, III, James Robert Guzak, Michael A. Mast
  • Patent number: 5693951
    Abstract: A Missile Launch and Flyout Simulator (MLFS) for simulating the UV and IR flight characteristics of an incoming missile throughout its launch, powered flight and post burnout phases, as would be viewed by a missile launch detection and tracking system. The simulator produces a UV output to simulate the launch of a missile, and an IR output to simulate the powered flight and post burnout phases of the missile's flight. In addition, the IR output ramps up in intensity during the simulated powered flight phase before dropping off to a simulated post burnout phase level, as would the IR signature of a real incoming missile. The simulator can also be programmable such that the duration of the emulated powered flight time, as well as the minimum and maximum IR intensity, can be varied to mimic the characteristics of the missile being simulated. In addition, the rate at which the IR intensity increases can be programmed so as to simulate different speeds of missile convergence to its target.
    Type: Grant
    Filed: December 11, 1995
    Date of Patent: December 2, 1997
    Assignee: Northrop Grumman Corporation
    Inventor: Maurice Leroy Strong, III