Patents by Inventor Max Oskar Köhler

Max Oskar Köhler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10698052
    Abstract: The invention provides for a medical apparatus (400, 500, 600, 700, 800) comprising a magnetic resonance imaging system (402) for acquiring magnetic resonance thermometry data (442) from a subject (418). The magnetic resonance imaging system comprises a magnet (404) with an imaging zone (408). The medical apparatus further comprises a memory (432) for storing machine executable instructions (460, 462, 464, 466, 10, 660). The medical apparatus further comprises a processor (426) for controlling the medical apparatus, wherein execution of the machine executable instructions causes the processor to: acquire (100, 200, 300) the magnetic resonance thermometry data from multiple slices (421, 421?, 421?) within the imaging zone by controlling the magnetic resonance imaging system; and interpolate (102, 202, 204, 302, 304) a three dimensional thermal dose estimate (444) in accordance with the magnetic resonance thermometry data.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: June 30, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Max Oskar Köhler
  • Patent number: 10406384
    Abstract: The invention provides for medical instrument (200, 400) comprising a magnetic resonance imaging system (202) and a high intensity focused ultrasound system (222). A processor (246) controls the medical instrument. Instructions cause the processor to control (100) the magnetic resonance imaging system to acquire the magnetic resonance data using a pulse sequence (254). The pulse sequence comprises an acoustic radiation force imaging pulse sequence (500, 600). The acoustic radiation force imaging pulse sequence comprises an excitation pulse (512) and a multi-dimensional gradient pulse (514) applied during the radio frequency excitation pulse for selectively exciting a region of interest (239) encompassing a target zone and at least a portion of the beam axis.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: September 10, 2019
    Assignee: Profound Medical Inc.
    Inventor: Max Oskar Köhler
  • Patent number: 10046179
    Abstract: The invention provides for a medical instrument (200) comprising a magnetic resonance imaging system (202) and a high intensity focused ultrasound system (202) with an adjustable focus (238). Execution of instructions causes a processor to control (100) medical instrument to sonicate the multiple sonication points while repeatedly acquire the thermal magnetic resonance imaging data. Multiple thermal maps are reconstructed using the thermal magnetic resonance imaging data and a heating center of mass is calculated for each. By comparing each of the heating center of masses to the sonication points a spatially dependent targeting correction (266) is determined. The spatially dependent targeting correction is then used to offset the adjustable focus.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: August 14, 2018
    Assignee: Profound Medical Inc.
    Inventor: Max Oskar Köhler
  • Patent number: 10010723
    Abstract: The invention relates to a system in the field of MR guided thermal treatment and more specifically to the temperature control. In the invention an MR and a thermal treatment system are combined. The thermal treatment system is configured to apply thermal treatment pulses to a subject. The prevent overheating of healthy tissue, the thermal treatment pulses are spaced by a cool-down period. The end of the cool-down period is determined by temperature measurements performed during the cool-down period.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: July 3, 2018
    Assignee: Profound Medical Inc.
    Inventor: Max Oskar Koehler
  • Patent number: 9986916
    Abstract: A catheter (700, 800, 1206) includes a shaft with distal (808, 906, 1004, 208) and proximal ends (1006). The distal end comprises at least one array of capacitive micromachined ultrasound transducers (308, 402, 404, 500, 512, 600, 604, 802, 008) with an adjustable focus for controllably heating a target zone (806, 1014, 1210). A connector (1012) at the proximal end supplies the at least one array of capacitive micromachined ultrasound transducers with electrical power and controls the adjustable focus.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: June 5, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Max Oskar Köhler, Peter Dirksen, Shunmugavelu Sokka, Ronald Dekker
  • Patent number: 9971003
    Abstract: A medical apparatus (300, 400, 500, 600) comprising a magnetic resonance imaging system (302). The medical apparatus further comprises a memory (332) storing machine readable instructions (352, 354, 356, 358, 470, 472, 474) for execution by a processor (326). Execution of the instructions causes the processor to acquire (100, 202) spectroscopic magnetic resonance data (334). Execution of the instructions further cause the processor to calculate (102, 204) a calibration thermal map (336) using the spectroscopic magnetic resonance data. Execution of the instructions further causes the processor to acquire (104, 206) baseline magnetic resonance thermometry data (338). Execution of the instructions further causes the processor to repeatedly acquire (106, 212) magnetic resonance thermometry data (340).
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: May 15, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Max Oskar Köhler, Erkki Tapani Vahala, Kirsi Ilona Nurmilaukas
  • Patent number: 9937364
    Abstract: A medical instrument (900, 1000) comprising a high intensity focused ultrasound system (911) comprising an ultrasound transducer (102, 104, 202, 204, 302, 407, 08) with an adjustable sonication frequency. The ultrasound transducer comprises capacitive micromachined transducers (102, 104, 202, 204, 302, 407, 508). Execution of machine executable instructions by a processor causes the processor to: receive (700, 800) a treatment plan (924) descriptive of a target zone (908) within a subject (902); determine (702, 802) a traversal distance (926) through the subject to the target zone using the treatment plan, wherein the traversal distance is descriptive of the traversal of ultrasound from the ultrasound transducer to the target zone; determine (704, 804) a sonication frequency (829) using the traversal distance for focusing the sonication volume onto the target zone; and sonicate (706, 806) the target zone using the high intensity focused ultrasound system at the sonication frequency.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: April 10, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Max Oskar Köhler
  • Patent number: 9669240
    Abstract: A therapy system includes a therapy module to perform successive deposits of energy in a target zone. The therapy system further includes a control module configured to, prior to deposits of energy, produce an a priori estimate of the induced heating. A thermometry module is configured to measure temperature in a measurement field. The induced heating may be derived based on a tissue model from the settings of a therapy module. The therapy module includes a high-intensity focused ultrasound transmitter. A magnetic resonance examination system configured for thermometry is employed as the thermometry module.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: June 6, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Max Oskar Köhler, Teuvo Vaara, Shunmugavelu Sokka, Gosta Jakob Ehnholm
  • Patent number: 9538956
    Abstract: A medical apparatus (300, 400, 500, 600) comprising a magnetic resonance imaging system (302). The medical apparatus further comprises a heating system (320, 502, 601) operable for heating a target zone (321) and a processor (326). Execution of machine readable instructions causes the processor to receive (100, 200, 700, 800) a treatment plan (340). Execution of the instructions further cause the processor to repeatedly: control (102, 204, 704, 804, 900, 1002) the heating system, using the treatment plan, to heat the target zone during alternating heating periods and cooling periods; acquire (104, 208, 702, 706, 802, 806, 902, 906, 1000, 1004) magnetic resonance data using the magnetic resonance imaging system, and modify (110, 214, 712, 812, 1008) the treatment plan using the magnetic resonance data. The instructions cause the processor to acquire the magnetic resonance data during a cooling period selected from at least one of the cooling periods.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: January 10, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Max Oskar Köhler, Erkki Tapani Vahala, Jukka Ilmari Tanttu, Jaakko Juhani Tölö
  • Patent number: 9420989
    Abstract: A medical apparatus including an ultrasound transmitter and receiver system for acquiring ultrasound data descriptive of the speed of ultrasound along at least two paths. The medical apparatus further includes a medical imaging system for acquiring medical image data and a memory containing instructions that causes the processor to acquire the medical image data. The instructions further cause the processor to acquire the ultrasound data. The instructions further cause the processor to segment the medical image data into at least two tissue types. The instructions further causes the processor to determine at least two distances corresponding to the at least two paths in the subject. The instructions further cause the processor to calculate the speed of ultrasound in the at least two tissue types.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: August 23, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Charles Mougenot, Gosta Jakob Ehnholm, Iipo Asko Julius Koskela, Max Oskar Köhler
  • Patent number: 9360544
    Abstract: A medical apparatus (300, 400, 500, 600) includes a magnetic resonance imaging system (301). The medical apparatus further includes a memory (330) containing instructions (350, 352, 354, 456, 458, 460) for execution by a processor (324). Execution of the instructions causes the processor to acquire (102, 202) baseline magnetic resonance data (332) and reconstruct (104, 204) a first image (334) using the baseline magnetic resonance data. Execution of the instructions further causes the processor acquire (106, 212) undersampled magnetic resonance data (336), which is undersampled in k- space in comparison to the baseline magnetic resonance data. Execution of the instructions further causes the processor reconstruct (108, 214) a second image (338) using the undersampled magnetic resonance data and the first image. The second image is reconstructed using an image ratio constrained reconstruction algorithm (354). A temperature map (340) is calculated (110, 216) using the second image.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: June 7, 2016
    Assignee: Koninklijke Philips N.V.
    Inventors: Feng Huang, Max Oskar Köhler, Jukka Iimari Tanttu, Wei Lin
  • Patent number: 9336605
    Abstract: A medical imaging system (900, 1000, 1100, 1200) for acquiring medical image data (930), the medical imaging system comprising: a tissue treating system (910, 1080, 1180, 1190, 1280, 1290) for treating a target volume (908); a computer system (918) comprising a processor (922), wherein the computer system is adapted for controlling the medical imaging system; and a memory (928) containing machine readable instructions (954, 956, 958, 962, 964, 966, 968, 970, 972, 974). Execution of the instructions cause the processor to: acquire (100, 200, 308) medical image data; reconstruct (102, 202, 310) a medical image (932) using the medical image data; receive (104, 204, 312) an image segmentation seed (600, 934) derived from a treatment plan (936), and identify (106, 210, 314) a treated volume (400, 700, 800) in the medical image by segmenting the medical image in accordance with the image segmentation seed.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: May 10, 2016
    Assignee: Koninklijke Philips N.V.
    Inventors: Heikki Juhani Nieminen, Max Oskar Köhler, Marko Tapani Hakkinen
  • Publication number: 20160089551
    Abstract: A high-intensity focused ultrasound (HIFU) therapy system comprises an ultrasound transduce to emit a focused ultrasound beam along a beam path. An ultrasound transparent window is positioned in the beam path. A fluid cooling system to provide cooling of an object to which the focused ultrasound beam is directed. The fluid cooling system includes a fluid receptacle mounted adjacent to the ultrasound transparent window and a cooling unit to cool a coolant and pass the coolant trough the fluid receptacle to and from the fluid receptacle. A degassing module and preferably also a filter to remove volatile components from the coolant. Dissolved air or other gases are removed from the coolant, so that the formation of bubbles in the coolant is avoided or at least suppressed.
    Type: Application
    Filed: May 14, 2014
    Publication date: March 31, 2016
    Inventors: MIKA PETRI YLIHAUTALA, TUOMO TAPIO ANTTILA, ANNEMARIA JOHANNA HALKOLA, MATTI OSKARI TILLANDER, MAX OSKAR KOEHLER
  • Publication number: 20160051845
    Abstract: The invention relates to a system in the field of MR guided thermal treatment and more specifically to the temperature control. In the invention an MR and a thermal treatment system are combined. The thermal treatment system is configured to apply thermal treatment pulses to a subject. The prevent overheating of healthy tissue, the thermal treatment pulses are spaced by a cool-down period. The end of the cool-down period is determined by temperature measurements performed during the cool-down period.
    Type: Application
    Filed: April 4, 2014
    Publication date: February 25, 2016
    Inventor: MAX OSKAR KOEHLER
  • Publication number: 20150190659
    Abstract: The invention provides for medical instrument (200, 400) comprising a magnetic resonance imaging system (202) and a high intensity focused ultrasound system (222). A processor (246) controls the medical instrument. Instructions cause the processor to control (100) the magnetic resonance imaging system to acquire the magnetic resonance data using a pulse sequence (254). The pulse sequence comprises an acoustic radiation force imaging pulse sequence (500, 600). The acoustic radiation force imaging pulse sequence comprises an excitation pulse (512) and a multi-dimensional gradient pulse (514) applied during the radio frequency excitation pulse for selectively exciting a region of interest (239) encompassing a target zone and at least a portion of the beam axis.
    Type: Application
    Filed: June 28, 2013
    Publication date: July 9, 2015
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventor: Max Oskar Köhler
  • Publication number: 20150142034
    Abstract: The invention provides for a medical instrument (200) comprising a magnetic resonance imaging system (202) and a high intensity focused ultrasound system (202) with an adjustable focus (238). Execution of instructions causes a processor to control (100) medical instrument to sonicate the multiple sonication points while repeatedly acquire the thermal magnetic resonance imaging data. Multiple thermal maps are reconstructed using the thermal magnetic resonance imaging data and a heating center of mass is calculated for each. By comparing each of the heating center of masses to the sonication points a spatially dependent targeting correction (266) is determined. The spatially dependent targeting correction is then used to offset the adjustable focus.
    Type: Application
    Filed: June 21, 2013
    Publication date: May 21, 2015
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventor: Max Oskar Köhler
  • Publication number: 20150073261
    Abstract: A medical apparatus (300, 400, 500, 600) comprising a magnetic resonance imaging system (302). The medical apparatus further comprises a heating system (320, 502, 601) operable for heating a target zone (321) and a processor (326). Execution of machine readable instructions causes the processor to receive (100, 200, 700, 800) a treatment plan (340). Execution of the instructions further cause the processor to repeatedly: control (102, 204, 704, 804, 900, 1002) the heating system, using the treatment plan, to heat the target zone during alternating heating periods and cooling periods; acquire (104, 208, 702, 706, 802, 806, 902, 906, 1000, 1004) magnetic resonance data using the magnetic resonance imaging system, and modify (110, 214, 712, 812, 1008) the treatment plan using the magnetic resonance data. The instructions cause the processor to acquire the magnetic resonance data during a cooling period selected from at least one of the cooling periods.
    Type: Application
    Filed: February 26, 2013
    Publication date: March 12, 2015
    Inventors: Max Oskar Köhler, Erkki Tapani Vahala, Jukka Ilmari Tanttu, Jaakko Juhani Tölö
  • Publication number: 20150038828
    Abstract: The invention provides for a medical apparatus (400, 500, 600, 700, 800) comprising a magnetic resonance imaging system (402) for acquiring magnetic resonance thermometry data (442) from a subject (418). The magnetic resonance imaging system comprises a magnet (404) with an imaging zone (408). The medical apparatus further comprises a memory (432) for storing machine executable instructions (460, 462, 464, 466, 10, 660). The medical apparatus further comprises a processor (426) for controlling the medical apparatus, wherein execution of the machine executable instructions causes the processor to: acquire (100, 200, 300) the magnetic resonance thermometry data from multiple slices (421, 421?, 421?) within the imaging zone by controlling the magnetic resonance imaging system; and interpolate (102, 202, 204, 302, 304) a three dimensional thermal dose estimate (444) in accordance with the magnetic resonance thermometry data.
    Type: Application
    Filed: March 5, 2013
    Publication date: February 5, 2015
    Applicant: Koninklijke Philips N.V.
    Inventor: Max Oskar Köhler
  • Publication number: 20140350539
    Abstract: A therapeutic apparatus (300, 400, 500) comprising a high intensity focused ultrasound system (302) comprising an ultrasound transducer (306). The ultrasound transducer has an electronically adjustable focus (318). The high intensity focused ultrasound system has a beam deflection zone (322, 608, 704, 1010). The intensity of ultrasound at the electronically adjustable focus divided by the acoustic power emitted is above a predetermined threshold (606, 1008) within the beam deflection zone. The therapeutic apparatus further comprises a processor (328) for controlling the therapeutic apparatus. Execution of machine executable instructions (350, 352, 354) causes the processor to: receive (102, 202) real time medical data (342, 424, 506) descriptive of the location of a moving target (320, 802); adjust (104, 204) the electronically adjustable focus to target the moving target using the real time medical data; and sonicate (106, 206) the moving target when the moving target is within the beam deflection zone.
    Type: Application
    Filed: August 27, 2012
    Publication date: November 27, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Charles Mougenot, Max Oskar Köhler
  • Publication number: 20140005521
    Abstract: A catheter (700, 800, 1206) comprising: a shaft with distal (808, 906, 1004, 208) and proximal ends (1006),wherein the distal end comprises at least one array of capacitive micromachined ultrasound transducers (308, 402, 404, 500, 512, 600, 604, 802, 008) with an adjustable focus for controllably heating a target zone (806, 1014, 1210); and a connector (1012) at the proximal end for supplying the at least one array of capacitive micromachined ultrasound transducers with electrical power and for controlling the adjustable focus.
    Type: Application
    Filed: November 15, 2011
    Publication date: January 2, 2014
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Max Oskar Köhler, Peter Dirksen, Shunmugavelu Sokka, Ronald Dekker