Patents by Inventor Maxim A. Vasilyev

Maxim A. Vasilyev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9274245
    Abstract: An apparatus for estimating a property of an earth formation includes a pulsed neutron generator configured to emit a pulse of neutrons, a formation radiation detector configured to detect radiation emitted from the formation due to interactions with the pulse of neutrons, and a neutron generator radiation detector having a crystal structure and configured to detect a radiation particle emitted from the pulsed neutron generator and to provide a location within the neutron radiation detector at which the particle was detected. The crystal structure includes a plurality of detection cells, each detection cell having at least two electrically conducting columns with an applied potential difference such that electrons generated in the crystal structure by interaction with the radiation particle are collected by at least one of the electrically conducting columns to provide detection locations. A processor estimates the property using the detected formation radiation and the detection locations.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: March 1, 2016
    Assignee: BAKER HUGHES INCORPORATED
    Inventors: Steven M. Bliven, Maxim Vasilyev, Toyli Anniyev
  • Patent number: 9261624
    Abstract: An apparatus and method for detecting radiation in a borehole intersecting an earth formation. The apparatus may include a neutron sensitive scintillation media and at least one optically transparent neutron absorptive material optically coupled to the media, which may be positioned to prevent incident neutrons from reaching a neutron-shaded surface of the media, and to provide directional sensitivity. The neutron absorptive material may comprise a light guide optically coupled to the neutron sensitive scintillation media. The scintillation media may be disposed within the at least one optically transparent neutron absorptive material, which may be configured to prevent substantially all incident neutrons having an incident neutron energy below a selected energy threshold from reaching the media. The selected energy threshold may be approximately 0.2 eV. A neutron-reflecting material may be disposed within the scintillation media.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: February 16, 2016
    Assignee: BAKER HUGHES INCORPORATED
    Inventors: Maxim Vasilyev, Toyli Anniyev, Steven M. Bliven, Andrey Federov, Mikhail Korjik
  • Publication number: 20150346382
    Abstract: An apparatus for estimating a property of an earth formation includes a pulsed neutron generator configured to emit a pulse of neutrons, a formation radiation detector configured to detect radiation emitted from the formation due to interactions with the pulse of neutrons, and a neutron generator radiation detector having a crystal structure and configured to detect a radiation particle emitted from the pulsed neutron generator and to provide a location within the neutron radiation detector at which the particle was detected. The crystal structure includes a plurality of detection cells, each detection cell having at least two electrically conducting columns with an applied potential difference such that electrons generated in the crystal structure by interaction with the radiation particle are collected by at least one of the electrically conducting columns to provide detection locations. A processor estimates the property using the detected formation radiation and the detection locations.
    Type: Application
    Filed: May 30, 2014
    Publication date: December 3, 2015
    Applicant: Baker Hughes Incorporated
    Inventors: Steven M. Bliven, Maxim Vasilyev, Toyli Anniyev
  • Patent number: 9201160
    Abstract: Systems, methods and devices for evaluating an earth formation intersected by a borehole. The method includes using a first radiation responsive component to detect gamma rays having an energy below a threshold energy; using a second radiation responsive component configured to detect gamma rays that traverse the first radiation responsive component; generating a reduced-Compton gamma ray spectrum by generating an anticoincidence gamma ray spectrum indicative of the gamma rays detected by the first radiation responsive component and the gamma rays detected by the second radiation responsive component. The anticoincidence gamma ray spectrum represents those gamma rays of the gamma rays detected by the second radiation responsive component that are not detected in coincidence with the gamma rays detected by the first radiation responsive component.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: December 1, 2015
    Assignee: BAKER HUGHES INCORPORATED
    Inventors: Maxim Vasilyev, Toyli Anniyev, Freddy E. Mendez, John M. Longo
  • Publication number: 20150323683
    Abstract: One general embodiment according to the present disclosure may be formation evaluation tool for detecting radiation in a borehole in a volume of an earth formation. The tool may include a detector including a monolithic scintillation element comprising a coherent assemblage of joined fibers, wherein the fibers are made of an optically transparent scintillation media. The fibers may be at least one of i) gamma ray responsive; and ii) neutron responsive. The coherent assemblage of fibers may be a continuous mass, may be heat-joined. The fibers may be solid. The scintillation media may comprise at least one of i) organic crystalline scintillation materials, ii) amorphous glass, and iii) nanostructured glass ceramics. The coherent assemblage of fibers may be asymmetric. The coherent assemblage of fibers may surround a further scintillation media having different scintillation characteristics than the scintillation media. The scintillation element may be azimuthally sensitive.
    Type: Application
    Filed: May 8, 2014
    Publication date: November 12, 2015
    Applicant: Baker Hughes Incorporated
    Inventors: Maxim Vasilyev, Toyli Anniyev, Valery N. Khabashesku, Andrey Federov, Mikhail Korjik, Gregor Chubaryan
  • Publication number: 20150129754
    Abstract: Systems, methods and devices for evaluating an earth formation intersected by a borehole. The method includes using a first radiation responsive component to detect gamma rays having an energy below a threshold energy; using a second radiation responsive component configured to detect gamma rays that traverse the first radiation responsive component; generating a reduced-Compton gamma ray spectrum by generating an anticoincidence gamma ray spectrum indicative of the gamma rays detected by the first radiation responsive component and the gamma rays detected by the second radiation responsive component. The anticoincidence gamma ray spectrum represents those gamma rays of the gamma rays detected by the second radiation responsive component that are not detected in coincidence with the gamma rays detected by the first radiation responsive component.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 14, 2015
    Applicant: Baker Hughes Incorporated
    Inventors: MAXIM VASILYEV, TOYLI ANNIYEV, FREDDY E. MENDEZ, JOHN M. LONGO
  • Publication number: 20150076336
    Abstract: An apparatus for estimating a property of an earth formation includes: a neutron source disposed in a borehole; a neutron detector having a neutron detection material that includes a material transparent to light having a plurality of nano-crystallites where each nano-crystallite in the plurality has a periodic crystal structure with a diameter or dimension that is less than 1000 nm and includes atoms of a neutron interaction material that emit a charged particle upon absorbing a received neutron and atoms of an activator material that provide for scintillation upon interacting with the charged particle to emit light photons wherein the atoms of the neutron interaction material and the atoms of the activator material have positions in the periodic crystal structure of each nano-crystallite in the plurality; a photodetector that receives the photons and provides a signal correlated to the photons; and a processor to estimate the property using the signal.
    Type: Application
    Filed: September 13, 2013
    Publication date: March 19, 2015
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Mikhail Korjik, Andrei Federov, Maxim Vasilyev, Anton Nikitin
  • Publication number: 20150076335
    Abstract: An apparatus for detecting a gamma-ray includes: a gamma-ray detection material comprising a material transparent to light having a plurality of nano-crystallites where each nano-crystallite in the plurality has as periodic crystal structure with a diameter or dimension that is less than 1000 nm and includes (i) a heavy atom having an atomic number greater than or equal to 55 that emits an energetic electron upon interacting with an incoming gamma-ray and (ii) and an activator atom that provides for scintillation upon interacting with the energetic electron to emit light photons wherein the heavy atom and the activator atom have positions in the periodic crystal structure of each nano-crystallite in the plurality; and a photodetector optically coupled to the gamma-ray detection material and configured to detect the light photons emitted from the scintillation and to provide a signal correlated to the detected light photons.
    Type: Application
    Filed: September 12, 2014
    Publication date: March 19, 2015
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Maxim Vasilyev, Valery N. Khabashesku, Andrei Fedorov, Mikhail Korjik
  • Publication number: 20140367562
    Abstract: An apparatus and method for detecting radiation in a borehole intersecting an earth formation. The apparatus may include a neutron sensitive scintillation media and at least one optically transparent neutron absorptive material optically coupled to the media, which may be positioned to prevent incident neutrons from reaching a neutron-shaded surface of the media, and to provide directional sensitivity. The neutron absorptive material may comprise a light guide optically coupled to the neutron sensitive scintillation media. The scintillation media may be disposed within the at least one optically transparent neutron absorptive material, which may be configured to prevent substantially all incident neutrons having an incident neutron energy below a selected energy threshold from reaching the media. The selected energy threshold may be approximately 0.2 eV. A neutron-reflecting material may be disposed within the scintillation media.
    Type: Application
    Filed: June 14, 2013
    Publication date: December 18, 2014
    Inventors: Maxim VASILYEV, Toyli ANNIYEV, Steven M. BLIVEN, Andrey FEDEROV, Mikhail KORJIK
  • Patent number: 8809798
    Abstract: Methods, systems and devices for estimating a parameter of interest from a gamma ray spectrum relating to a volume of matter using standard gamma ray spectra from reference samples, wherein there is at least one non-elemental characteristic that is different between the volume and at least one of the reference samples, wherein the non-elemental characteristic difference affects gamma ray interactions. Methods may include deconvolving a gamma ray spectrum obtained from the analysis volume into a plurality of elemental spectral yields, wherein deconvolution includes compensating for effects of the non-elemental characteristic difference. Methods may include using at least one compensation standard spectrum configured to compensate for the effects of the non-elemental characteristic of the at least one of the reference samples.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: August 19, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Freddy E. Mendez, Gary A. Feuerbacher, John M. Longo, Maxim Vasilyev
  • Publication number: 20140197324
    Abstract: Methods, systems and devices for estimating a parameter of interest from a gamma ray spectrum relating to a volume of matter using standard gamma ray spectra from reference samples, wherein there is at least one non-elemental characteristic that is different between the volume and at least one of the reference samples, wherein the non-elemental characteristic difference affects gamma ray interactions. Methods may include deconvolving a gamma ray spectrum obtained from the analysis volume into a plurality of elemental spectral yields, wherein deconvolution includes compensating for effects of the non-elemental characteristic difference. Methods may include using at least one compensation standard spectrum configured to compensate for the effects of the non-elemental characteristic of the at least one of the reference samples.
    Type: Application
    Filed: January 11, 2013
    Publication date: July 17, 2014
    Applicant: Baker Hughes Incorporated
    Inventors: Freddy E. MENDEZ, Gary A. FEUERBACHER, John M. LONGO, Maxim VASILYEV