Patents by Inventor Maxim Tsypin

Maxim Tsypin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210098131
    Abstract: A method is disclosed of predicting cancer patient response to immune checkpoint inhibitors, e.g., an antibody drug blocking ligand activation of programmed cell death 1 (PD-1) or CTLA4. The method includes obtaining mass spectrometry data from a blood-based sample of the patient, obtaining integrated intensity values in the mass spectrometry data of a multitude of pre-determined mass-spectral features; and operating on the mass spectral data with a programmed computer implementing a classifier. The classifier compares the integrated intensity values with feature values of a training set of class-labeled mass spectral data obtained from a multitude of melanoma patients with a classification algorithm and generates a class label for the sample. A class label “early” or the equivalent predicts the patient is likely to obtain relatively less benefit from the antibody drug and the class label “late” or the equivalent indicates the patient is likely to obtain relatively greater benefit from the antibody drug.
    Type: Application
    Filed: December 11, 2020
    Publication date: April 1, 2021
    Applicant: BIODESIX, INC.
    Inventors: Joanna Roder, Krista Meyer, Julia Grigorieva, Maxim Tsypin, Carlos Oliveira, Ami Steingrimsson, Heinrich Roder, Senait Asmellash, Kevin Sayers, Caroline Maher
  • Patent number: 10950348
    Abstract: A method is disclosed of predicting cancer patient response to immune checkpoint inhibitors, e.g., an antibody drug blocking ligand activation of programmed cell death 1 (PD-1) or CTLA4. The method includes obtaining mass spectrometry data from a blood-based sample of the patient, obtaining integrated intensity values in the mass spectrometry data of a multitude of pre-determined mass-spectral features; and operating on the mass spectral data with a programmed computer implementing a classifier. The classifier compares the integrated intensity values with feature values of a training set of class-labeled mass spectral data obtained from a multitude of melanoma patients with a classification algorithm and generates a class label for the sample. A class label “early” or the equivalent predicts the patient is likely to obtain relatively less benefit from the antibody drug and the class label “late” or the equivalent indicates the patient is likely to obtain relatively greater benefit from the antibody drug.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: March 16, 2021
    Assignee: BIODESIX, INC.
    Inventors: Joanna Röder, Krista Meyer, Julia Grigorieva, Maxim Tsypin, Carlos Oliveira, Arni Steingrimsson, Heinrich Röder, Senait Asmellash, Kevin Sayers, Caroline Maher
  • Publication number: 20180277249
    Abstract: A method is disclosed of predicting cancer patient response to immune checkpoint inhibitors, e.g., an antibody drug blocking ligand activation of programmed cell death 1 (PD-1) or CTLA4. The method includes obtaining mass spectrometry data from a blood-based sample of the patient, obtaining integrated intensity values in the mass spectrometry data of a multitude of pre-determined mass-spectral features; and operating on the mass spectral data with a programmed computer implementing a classifier. The classifier compares the integrated intensity values with feature values of a training set of class-labeled mass spectral data obtained from a multitude of melanoma patients with a classification algorithm and generates a class label for the sample. A class label “early” or the equivalent predicts the patient is likely to obtain relatively less benefit from the antibody drug and the class label “late” or the equivalent indicates the patient is likely to obtain relatively greater benefit from the antibody drug.
    Type: Application
    Filed: May 29, 2018
    Publication date: September 27, 2018
    Inventors: Joanna Röder, Krista Meyer, Julia Grigorieva, Maxim Tsypin, Carlos Oliveira, Arni Steingrimsson, Heinrich Röder, Senait Asmellash, Kevin Sayers, Caroline Maher
  • Patent number: 10007766
    Abstract: A method is disclosed of predicting cancer patient response to immune checkpoint inhibitors, e.g., an antibody drug blocking ligand activation of programmed cell death 1 (PD-1) or CTLA4. The method includes obtaining mass spectrometry data from a blood-based sample of the patient, obtaining integrated intensity values in the mass spectrometry data of a multitude of pre-determined mass-spectral features; and operating on the mass spectral data with a programmed computer implementing a classifier. The classifier compares the integrated intensity values with feature values of a training set of class-labeled mass spectral data obtained from a multitude of melanoma patients with a classification algorithm and generates a class label for the sample. A class label “early” or the equivalent predicts the patient is likely to obtain relatively less benefit from the antibody drug and the class label “late” or the equivalent indicates the patient is likely to obtain relatively greater benefit from the antibody drug.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: June 26, 2018
    Assignee: Biodesix, Inc.
    Inventors: Joanna Röder, Krista Meyer, Julia Grigorieva, Maxim Tsypin, Carlos Oliveira, Arni Steingrimsson, Heinrich Röder, Senait Asmellash, Kevin Sayers, Caroline Maher, Jeffrey Weber
  • Patent number: 9824182
    Abstract: A process of determining whether a patient with a disease or disorder will be responsive to a drug, used to treat the disease or disorder, including obtaining a test spectrum produced by a mass spectrometer from a serum produced from the patient. The test spectrum may be processed to determine a relation to a group of class labeled spectra produced from respective serum from other patients having the or similar clinical stage same disease or disorder and known to have responded or not responded to the drug. Based on the relation of the test spectrum to the group of class labeled spectra, a determination may be made as to whether the patient will be responsive to the drug.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: November 21, 2017
    Assignee: Biodesix, Inc.
    Inventors: Heinrich Röder, Maxim Tsypin, Julia Grigorieva
  • Patent number: 9606101
    Abstract: A method of analyzing a biological sample, for example serum or other blood-based samples, using a MALDI-TOF mass spectrometer instrument is described. The method includes the steps of applying the sample to a sample spot on a MALDI-TOF sample plate and directing more than 20,000 laser shots to the sample at the sample spot and collecting mass-spectral data from the instrument. In some embodiments at least 100,000 laser shots and even 500,000 shots are directed onto the sample. It has been discovered that this approach, referred to as “deep-MALDI”, leads to a reduction in the noise level in the mass spectra and that a significant amount of additional spectral information can be obtained from the sample. Moreover, peaks visible at lower number of shots become better defined and allow for more reliable comparisons between samples.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: March 28, 2017
    Assignee: Biodesix, Inc.
    Inventors: Heinrich Röder, Senait Asmellash, Jenna Allen, Maxim Tsypin
  • Publication number: 20170039345
    Abstract: A method is disclosed of predicting cancer patient response to immune checkpoint inhibitors, e.g., an antibody drug blocking ligand activation of programmed cell death 1 (PD-1) or CTLA4. The method includes obtaining mass spectrometry data from a blood-based sample of the patient, obtaining integrated intensity values in the mass spectrometry data of a multitude of pre-determined mass-spectral features; and operating on the mass spectral data with a programmed computer implementing a classifier. The classifier compares the integrated intensity values with feature values of a training set of class-labeled mass spectral data obtained from a multitude of melanoma patients with a classification algorithm and generates a class label for the sample. A class label “early” or the equivalent predicts the patient is likely to obtain relatively less benefit from the antibody drug and the class label “late” or the equivalent indicates the patient is likely to obtain relatively greater benefit from the antibody drug.
    Type: Application
    Filed: July 12, 2016
    Publication date: February 9, 2017
    Inventors: Joanna Röder, Krista Meyer, Julia Grigorieva, Maxim Tsypin, Carlos Oliveira, Arni Steingrimsson, Heinrich Röder, Senait Asmellash, Kevin Sayers, Caroline Maher, Jeffrey Weber
  • Patent number: 9279798
    Abstract: A method of analyzing a biological sample, for example serum or other blood-based samples, using a MALDI-TOF mass spectrometer instrument is described. The method includes the steps of applying the sample to a sample spot on a MALDI-TOF sample plate and directing more than 20,000 laser shots to the sample at the sample spot and collecting mass-spectral data from the instrument. In some embodiments at least 100,000 laser shots and even 500,000 shots are directed onto the sample. It has been discovered that this approach, referred to as “deep-MALDI”, leads to a reduction in the noise level in the mass spectra and that a significant amount of additional spectral information can be obtained from the sample. Moreover, peaks visible at lower number of shots become better defined and allow for more reliable comparisons between samples.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 8, 2016
    Assignee: Biodesix, Inc.
    Inventors: Heinrich Röder, Senait Asmellash, Jenna Allen, Maxim Tsypin
  • Publication number: 20160018410
    Abstract: A method of analyzing a biological sample, for example serum or other blood-based samples, using a MALDI-TOF mass spectrometer instrument is described. The method includes the steps of applying the sample to a sample spot on a MALDI-TOF sample plate and directing more than 20,000 laser shots to the sample at the sample spot and collecting mass-spectral data from the instrument. In some embodiments at least 100,000 laser shots and even 500,000 shots are directed onto the sample. It has been discovered that this approach, referred to as “deep-MALDI”, leads to a reduction in the noise level in the mass spectra and that a significant amount of additional spectral information can be obtained from the sample. Moreover, peaks visible at lower number of shots become better defined and allow for more reliable comparisons between samples.
    Type: Application
    Filed: September 29, 2015
    Publication date: January 21, 2016
    Inventors: Heinrich Röder, Senait Asmellash, Jenna Allen, Maxim Tsypin
  • Patent number: 9152758
    Abstract: A process of determining whether a patient with a disease or disorder will be responsive to a drug, used to treat the disease or disorder, including obtaining a test spectrum produced by a mass spectrometer from a serum produced from the patient. The test spectrum may be processed to determine a relation to a group of class labeled spectra produced from respective serum from other patients having the or similar clinical stage same disease or disorder and known to have responded or not responded to the drug. Based on the relation of the test spectrum to the group of class labeled spectra, a determination may be made as to whether the patient will be responsive to the drug.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: October 6, 2015
    Assignee: Biodesix, Inc.
    Inventors: Heinrich Röder, Maxim Tsypin, Julia Grigorieva
  • Publication number: 20140284468
    Abstract: Methods using mass spectral data analysis and a classification algorithm provide an ability to determine whether a solid epithelial tumor cancer patient is likely to benefit from a therapeutic agent or a combination of therapeutic agents targeting agonists of the receptors, receptors or proteins involved in MAPK (mitogen-activated protein kinase) pathways or the PKC (protein kinase C) pathway upstream from or at Akt or ERK/JNK/p38 or PKC, such as therapeutic agents targeting EGFR and/or HER2. The methods also provide the ability to determine whether the cancer patient is likely to benefit from the combination of a therapeutic agent targeting EFGR and a therapeutic agent targeting COX2; or whether the cancer patient is likely to benefit from the treatment with an NF-?B inhibitor.
    Type: Application
    Filed: June 4, 2014
    Publication date: September 25, 2014
    Inventors: Julia Grigorieva, Heinrich Röder, Maxim Tsypin
  • Publication number: 20130320203
    Abstract: A method of analyzing a biological sample, for example serum or other blood-based samples, using a MALDI-TOF mass spectrometer instrument is described. The method includes the steps of applying the sample to a sample spot on a MALDI-TOF sample plate and directing more than 20,000 laser shots to the sample at the sample spot and collecting mass-spectral data from the instrument. In some embodiments at least 100,000 laser shots and even 500,000 shots are directed onto the sample. It has been discovered that this approach, referred to as “deep-MALDI”, leads to a reduction in the noise level in the mass spectra and that a significant amount of additional spectral information can be obtained from the sample. Moreover, peaks visible at lower number of shots become better defined and allow for more reliable comparisons between samples.
    Type: Application
    Filed: March 15, 2013
    Publication date: December 5, 2013
    Inventors: Heinrich Röder, Senait Asmellash, Jenna Allen, Maxim Tsypin
  • Patent number: 8586379
    Abstract: Methods using mass spectral data analysis and a classification algorithm provide an ability to determine whether a non-small-cell lung cancer patient, head and neck squamous cell carcinoma or colorectal cancer patient has likely developed a non-responsiveness to treatment with a drug targeting an epidermal growth factor receptor pathway. As the methods of this disclosure require only simple blood samples, the methods enable a fast and non-intrusive way of measuring when drugs targeting the EGFR pathway cease to be effective in certain patients. This discovery represents the first known example of true personalized selection of these types of cancer patients for treatment using these classes of drugs not only initially, but during the course of treatment.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: November 19, 2013
    Assignee: Biodesix, Inc.
    Inventors: Heinrich Röder, Maxim Tsypin, Julia Grigorieva
  • Patent number: 8586380
    Abstract: Methods using mass spectral data analysis and a classification algorithm provide an ability to determine whether a non-small-cell lung cancer patient, head and neck squamous cell carcinoma or colorectal cancer patient has likely developed a non-responsiveness to treatment with a drug targeting an epidermal growth factor receptor pathway. As the methods of this disclosure require only simple blood samples, the methods enable a fast and non-intrusive way of measuring when drugs targeting the EGFR pathway cease to be effective in certain patients. This discovery represents the first known example of true personalized selection of these types of cancer patients for treatment using these classes of drugs not only initially, but during the course of treatment.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: November 19, 2013
    Assignee: Biodesix, Inc.
    Inventors: Heinrich Röder, Maxim Tsypin, Julia Grigorieva
  • Patent number: 8467988
    Abstract: A method and system for validating machine performance of a mass spectrometer makes use of a machine qualification set of samples. The mass spectrometer operates on the machine qualification set of samples and obtains a set of performance evaluation mass spectra. The performance evaluation spectra are classified with respect to a classification reference set of spectra with the aid of a programmed computer executing a classification algorithm. The classification algorithm also operates on a set of spectra obtained in a previous standard machine run of the machine qualification set of samples. The results from the classification algorithm are then compared with respect to predefined, objective performance criteria (e.g., class label concordance and others) and a machine validation result, e.g., PASS or FAIL, is generated from the comparison.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: June 18, 2013
    Assignee: Biodesix, Inc.
    Inventors: Joanna Röder, Heinrich Röder, Maxim Tsypin
  • Publication number: 20120191370
    Abstract: A process of determining whether a patient with a disease or disorder will be responsive to a drug, used to treat the disease or disorder, including obtaining a test spectrum produced by a mass spectrometer from a serum produced from the patient. The test spectrum may be processed to determine a relation to a group of class labeled spectra produced from respective serum from other patients having the or similar clinical stage same disease or disorder and known to have responded or not responded to the drug. Based on the relation of the test spectrum to the group of class labeled spectra, a determination may be made as to whether the patient will be responsive to the drug.
    Type: Application
    Filed: March 29, 2012
    Publication date: July 26, 2012
    Inventors: Heinrich Roder, Maxim Tsypin, Julia Grigorieva
  • Publication number: 20120089341
    Abstract: A process of determining whether a patient with a disease or disorder will be responsive to a drug, used to treat the disease or disorder, including obtaining a test spectrum produced by a mass spectrometer from a serum produced from the patient. The test spectrum may be processed to determine a relation to a group of class labeled spectra produced from respective serum from other patients having the or similar clinical stage same disease or disorder and known to have responded or not responded to the drug. Based on the relation of the test spectrum to the group of class labeled spectra, a determination may be made as to whether the patient will be responsive to the drug.
    Type: Application
    Filed: November 11, 2011
    Publication date: April 12, 2012
    Inventors: Heinrich Roder, Maxim Tsypin, Julia Grigorieva
  • Publication number: 20120074310
    Abstract: Methods using mass spectral data analysis and a classification algorithm provide an ability to determine whether a non-small-cell lung cancer patient, head and neck squamous cell carcinoma or colorectal cancer patient has likely developed a non-responsiveness to treatment with a drug targeting an epidermal growth factor receptor pathway. As the methods of this disclosure require only simple blood samples, the methods enable a fast and non-intrusive way of measuring when drugs targeting the EGFR pathway cease to be effective in certain patients. This discovery represents the first known example of true personalized selection of these types of cancer patients for treatment using these classes of drugs not only initially, but during the course of treatment.
    Type: Application
    Filed: December 7, 2011
    Publication date: March 29, 2012
    Inventors: Heinrich Röder, Maxim Tsypin, Julia Grigorieva
  • Publication number: 20120074311
    Abstract: Methods using mass spectral data analysis and a classification algorithm provide an ability to determine whether a non-small-cell lung cancer patient, head and neck squamous cell carcinoma or colorectal cancer patient has likely developed a non-responsiveness to treatment with a drug targeting an epidermal growth factor receptor pathway. As the methods of this disclosure require only simple blood samples, the methods enable a fast and non-intrusive way of measuring when drugs targeting the EGFR pathway cease to be effective in certain patients. This discovery represents the first known example of true personalized selection of these types of cancer patients for treatment using these classes of drugs not only initially, but during the course of treatment.
    Type: Application
    Filed: December 7, 2011
    Publication date: March 29, 2012
    Inventors: Heinrich Röder, Maxim Tsypin, Julia Grigorieva
  • Patent number: 8119417
    Abstract: Methods using mass spectral data analysis and a classification algorithm provide an ability to determine whether a non-small-cell lung cancer patient, head and neck squamous cell carcinoma or colorectal cancer patient has likely developed a non-responsiveness to treatment with a drug targeting an epidermal growth factor receptor pathway. As the methods of this disclosure require only simple blood samples, the methods enable a fast and non-intrusive way of measuring when drugs targeting the EGFR pathway cease to be effective in certain patients. This discovery represents the first known example of true personalized selection of these types of cancer patients for treatment using these classes of drugs not only initially, but during the course of treatment.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: February 21, 2012
    Assignee: Biodesix, Inc.
    Inventors: Heinrich Röder, Maxim Tsypin, Julia Grigorieva