Patents by Inventor Maxime Philippe Frederic GENIN

Maxime Philippe Frederic GENIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11803127
    Abstract: A method for determining a root cause affecting yield in a process for manufacturing devices on a substrate, the method including: obtaining yield distribution data including a distribution of a yield parameter across the substrate or part thereof; obtaining sets of metrology data, each set including a spatial variation of a process parameter over the substrate or part thereof corresponding to a different layer of the substrate; comparing the yield distribution data and metrology data based on a similarity metric describing a spatial similarity between the yield distribution data and an individual set out of the sets of the metrology data; and determining a first similar set of metrology data out of the sets of metrology data, being the first set of metrology data in terms of processing order for the corresponding layers, which is determined to be similar to the yield distribution data.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: October 31, 2023
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Chenxi Lin, Cyrus Emil Tabery, Hakki Ergün Cekli, Simon Philip Spencer Hastings, Boris Menchtchikov, Yi Zou, Yana Cheng, Maxime Philippe Frederic Genin, Tzu-Chao Chen, Davit Harutyunyan, Youping Zhang
  • Publication number: 20230236512
    Abstract: Methods for training a process model and determining ranking of simulated patterns (e.g., corresponding to hot spots). A method involves obtaining a training data set including: (i) a simulated pattern associated with a mask pattern to be printed on a substrate, (ii) inspection data of a printed pattern imaged on the substrate using the mask pattern, and (iii) measured values of a parameter of the patterning process applied during imaging of the mask pattern on the substrate; and training a machine learning model for the patterning process based on the training data set to predict a difference in a characteristic of the simulated pattern and the printed pattern. The trained machine learning model can be used for determining a ranking of hot spots. In another method a model is trained based on measurement data to predict ranking of the hot spots.
    Type: Application
    Filed: March 7, 2023
    Publication date: July 27, 2023
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Youping ZHANG, Maxime Philippe Frederic Genin, Cong Wu, Jing Su, Weixuan Hu, Yi Zou
  • Patent number: 11635699
    Abstract: Methods for training a process model and determining ranking of simulated patterns (e.g., corresponding to hot spots). A method involves obtaining a training data set including: (i) a simulated pattern associated with a mask pattern to be printed on a substrate, (ii) inspection data of a printed pattern imaged on the substrate using the mask pattern, and (iii) measured values of a parameter of the patterning process applied during imaging of the mask pattern on the substrate; and training a machine learning model for the patterning process based on the training data set to predict a difference in a characteristic of the simulated pattern and the printed pattern. The trained machine learning model can be used for determining a ranking of hot spots. In another method a model is trained based on measurement data to predict ranking of the hot spots.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: April 25, 2023
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Youping Zhang, Maxime Philippe Frederic Genin, Cong Wu, Jing Su, Weixuan Hu, Yi Zou
  • Patent number: 11403453
    Abstract: A method including obtaining verified values of a characteristic of a plurality of patterns on a substrate produced by a device manufacturing process; obtaining computed values of the characteristic using a non-probabilistic model; obtaining values of a residue of the non-probabilistic model based on the verified values and the computed values; and obtaining an attribute of a distribution of the residue based on the values of the residue. Also disclosed herein are methods of computing a probability of defects on a substrate produced by the device manufacturing process, and of obtaining an attribute of a distribution of the residue of a non-probabilistic model.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: August 2, 2022
    Assignee: ASML Netherlands B.V.
    Inventors: Lin Lee Cheong, Bruno La Fontaine, Marc Jurian Kea, Yasri Yudhistira, Maxime Philippe Frederic Genin
  • Publication number: 20220043356
    Abstract: Methods for training a process model and determining ranking of simulated patterns (e.g., corresponding to hot spots). A method involves obtaining a training data set including: (i) a simulated pattern associated with a mask pattern to be printed on a substrate, (ii) inspection data of a printed pattern imaged on the substrate using the mask pattern, and (iii) measured values of a parameter of the patterning process applied during imaging of the mask pattern on the substrate; and training a machine learning model for the patterning process based on the training data set to predict a difference in a characteristic of the simulated pattern and the printed pattern. The trained machine learning model can be used for determining a ranking of hot spots. In another method a model is trained based on measurement data to predict ranking of the hot spots.
    Type: Application
    Filed: December 4, 2019
    Publication date: February 10, 2022
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Youping ZHANG, Maxime Philippe Frederic GENIN, Cong WU, Jing SU, Weixuan HU, Yi ZOU
  • Publication number: 20220011728
    Abstract: A method for predicting yield relating to a process of manufacturing semiconductor devices on a substrate, the method including: obtaining a trained first model which translates modeled parameters into a yield parameter, the modeled parameters including: a) a geometrical parameter associated with one or more selected from: a geometric characteristic, dimension or position of a device element manufactured by the process and b) a trained free parameter; obtaining process parameter data including data regarding a process parameter characterizing the process; converting the process parameter data into values of the geometrical parameter; and predicting the yield parameter using the trained first model and the values of the geometrical parameter.
    Type: Application
    Filed: October 30, 2019
    Publication date: January 13, 2022
    Inventors: Youping ZHANG, Boris MENCHTCHIKOV, Cyrus Emil TABERY, Yi ZOU, Chenxi LIN, Yana CHENG, Simon Philip Spencer HASTINGS, Maxime Philippe Frederic GENIN
  • Publication number: 20210397172
    Abstract: A method for analyzing a process, the method including obtaining a multi-dimensional probability density function representing an expected distribution of values for a plurality of process parameters; obtaining a performance function relating values of the process parameters to a performance metric of the process; and using the performance function to map the probability density function to a performance probability function having the process parameters as arguments.
    Type: Application
    Filed: October 30, 2019
    Publication date: December 23, 2021
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Abraham SLACHTER, Wim Tjibbo TEL, Daan Maurits SLOTBOOM, Vadim Yourievich TIMOSHKOV, Koen Wilhelmus Cornelis Adrianus VAN DER STRATEN, Boris MENCHTCHIKOV, Simon Philip Spencer HASTINGS, Cyrus Emil TABERY, Maxime Philippe Frederic GENIN, Youping ZHANG, Yi ZOU, Chenxi LIN, Yana CHENG
  • Publication number: 20210389677
    Abstract: A method for determining a root cause affecting yield in a process for manufacturing devices on a substrate, the method including: obtaining yield distribution data including a distribution of a yield parameter across the substrate or part thereof; obtaining sets of metrology data, each set including a spatial variation of a process parameter over the substrate or part thereof corresponding to a different layer of the substrate; comparing the yield distribution data and metrology data based on a similarity metric describing a spatial similarity between the yield distribution data and an individual set out of the sets of the metrology data; and determining a first similar set of metrology data out of the sets of metrology data, being the first set of metrology data in terms of processing order for the corresponding layers, which is determined to be similar to the yield distribution data.
    Type: Application
    Filed: November 4, 2019
    Publication date: December 16, 2021
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Chenxi LIN, Cyrus Emil TABERY, Hakki Ergün CEKLI, Simon Philip Spencer HASTINGS, Boris MENCHTCHIKOV, Yi ZOU, Yana CHENG, Maxime Philippe Frederic GENIN, Tzu-Chao CHEN, Davit HARUTYUNYAN, Youping ZHANG
  • Publication number: 20210150115
    Abstract: A method including obtaining verified values of a characteristic of a plurality of patterns on a substrate produced by a device manufacturing process; obtaining computed values of the characteristic using a non-probabilistic model; obtaining values of a residue of the non-probabilistic model based on the verified values and the computed values; and obtaining an attribute of a distribution of the residue based on the values of the residue. Also disclosed herein are methods of computing a probability of defects on a substrate produced by the device manufacturing process, and of obtaining an attribute of a distribution of the residue of a non-probabilistic model.
    Type: Application
    Filed: June 20, 2018
    Publication date: May 20, 2021
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Lin Lee CHEONG, Bruno LA FONTAINE, Marc Jurian KEA, Yasri YUDHISTIRA, Maxime Philippe Frederic GENIN