Patents by Inventor Maximilian Lehenmeier

Maximilian Lehenmeier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11970594
    Abstract: Polybutylene terephthalate can be used as a gas diffusion barrier for closed-cell rigid polyurethane foams. A thermal insulation element containing a closed-cell, rigid polyurethane foam, which is at least partially covered by a layer system containing at least one layer formed by a polybutylene terephthalate composition, is useful. Articles and devices may contain a corresponding thermal insulation structure, such as refrigerators, insulation panels, pipe insulations, water heaters, and thermally insulated transport boxes.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: April 30, 2024
    Assignee: BASF SE
    Inventors: Maximilian Lehenmeier, Hendrik Wagner, Rainer Klenz, Heike Hoelscher
  • Publication number: 20230357494
    Abstract: In a first aspect, the invention relates to a polymer composition comprising (i) a polyester; and (ii) an oxidizable organic polymer consisting of a branched or unbranched alkyl chain, which comprises at least one oxidizable C?C double bond. A second aspect of the invention relates to the use of the polymer composition according to the first aspect for the preparation of a polymer article. In a third aspect, the invention relates to a polymer article comprising the polymer composition according to the first aspect. In a fourth aspect, the invention relates to a method for preparing a polymer composition having oxygen consumption activity.
    Type: Application
    Filed: August 6, 2021
    Publication date: November 9, 2023
    Inventors: Erik Gubbels, Maximilian Lehenmeier
  • Publication number: 20230303824
    Abstract: Thermoplastic mixtures comprising: A) 30% to 100% by weight of a thermoplastic blend consisting of: A-1) 55% to 75% by weight of a polyester, A-2) 5% to 25% by weight of an HD or LD polyethylene, A-3) 10% to 25% by weight of an ionomer composed of at least one copolymer of: 3-1) 30% to 99% by weight of ethylene 3-2) 0% to 60% by weight of one or more compounds selected from the group consisting of 1-octene, 1-butene and propylene and 3-3) 0.
    Type: Application
    Filed: August 5, 2021
    Publication date: September 28, 2023
    Inventors: Erik Gubbels, Maximilian Lehenmeier
  • Publication number: 20230295191
    Abstract: The present invention relates to a molding comprising, (i) a polyester in an amount in the range of from 25 to 99.99 weight-%, based on the total weight of the molding, (ii) a metal-organic framework in an amount of from 0.01 to 25 weight-%, based on the total weight of the molding, wherein the metal-organic framework comprises one or more metal ions M and one or more organic ligands. Further, the present invention relates to a process for preparation of such a molding and use thereof.
    Type: Application
    Filed: August 2, 2021
    Publication date: September 21, 2023
    Inventors: Erik Gubbels, Maximilian Lehenmeier, Alvaro Gordillo Bolonio
  • Publication number: 20230150181
    Abstract: Disclosed herein is a method of preparing a molding containing a structured polysiloxane layer as outermost layer, by using a molding composition (M) to prepare a sheet, film or foil (1), engraving a structure into the surface thereof by means of a laser (2), applying a polysiloxane (PS) onto the surface thereof (3), curing the (PS) to obtain a cured (PS) layer (4), adhering at least one fiber containing material onto the cured (PS) layer obtained with at least one adhesive (A1) (5), and removing the obtained stack including the at least one fiber material adhered to the cured (PS) layer via (A1) from the laser-engraved sheet, film or foil to obtain the molding containing the cured and structured (PS) as outermost layer of the molding, the cured (PS) layer having the negative of the laser engraved structure of the sheet, film or foil (6).
    Type: Application
    Filed: April 9, 2021
    Publication date: May 18, 2023
    Inventors: Timm KROEGER, Juergen HERRMANN, Rainer KLENZ, Maximilian LEHENMEIER, Zhenhua ZHANG
  • Publication number: 20230114944
    Abstract: The invention relates to a container for ingredients for making beverages in the form of a rotation-symmetric truncated cone which is open at the larger bottom end of the truncated cone and closed at the smaller top end of the truncated cone by a top section of the truncated cone which preferably is of a flat, rounded, inclined or dented form or a combination of these forms, wherein the larger bottom end of the truncated cone can be closed by a base plate or membrane and can have an outward flange section to which the base plate or membrane can be attached, and wherein the thickness of the container wall is non-uniform, the container wall forming one or more circumferential stiffening rings which cover 10 to 50% of the container height, and wherein the wall thickness of the stiffening rings is at least 50% higher than the wall thickness in the remaining container wall outside the stiffening rings, the container having a maximum height of 5 cm and a maximum diameter without flange of 6 cm.
    Type: Application
    Filed: March 23, 2021
    Publication date: April 13, 2023
    Inventors: Maximilian Lehenmeier, Christian Schweiger, Sebastian Ebli, Thomas Hohenstein
  • Publication number: 20230002582
    Abstract: Polybutylene terephthalate can be used as a gas diffusion barrier for closed-cell rigid polyurethane foams. A thermal insulation element containing a closed-cell, rigid polyurethane foam, which is at least partially covered by a layer system containing at least one layer formed by a polybutylene terephthalate composition, is useful. Articles and devices may contain a corresponding thermal insulation structure, such as refrigerators, insulation panels, pipe insulations, water heaters, and thermally insulated transport boxes.
    Type: Application
    Filed: September 17, 2020
    Publication date: January 5, 2023
    Applicant: BASF SE
    Inventors: Maximilian Lehenmeier, Hendrik Wagner, Rainer Klenz, Heike Hoelscher
  • Patent number: 11401373
    Abstract: The invention relates to a continuous process for producing an aliphatic polyester constructed from aliphatic dicarboxylic acids and aliphatic diols comprising the steps of a) esterification, b) polycondensation and optionally c) chain extension, characterized in that during step b) in which the polycondenser functions as a degassing apparatus (B) and/or b?) after the polycondensation in an additional degassing apparatus (B?) the crude polyester is degassed at a pressure of 0.01 to 5 mbar in the presence of 1% to 7% by weight, based on the total weight of the crude polyester of water, introduced into the gas space of the degassing apparatus B and/or B? as an entraining agent.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: August 2, 2022
    Assignee: BASF SE
    Inventors: Maximilian Lehenmeier, Norbert Effen, Gabriel Skupin
  • Patent number: 11401413
    Abstract: The present invention relates to an injection molded article comprising: i) 27% to 87% by weight based on the total weight of the components i to iv of a polyester constructed from aliphatic dicarboxylic acids and aliphatic diols; ii) 3% to 15% by weight based on the total weight of the components i to iv of an aliphatic-aromatic polyester comprising: ii-a) 30 to 70 mol % based on the components ii-a to ii-b of a C6-C18-dicarboxylic acid; ii-b) 30 to 70 mol % based on the components ii-a to ii-b of terephthalic acid; ii-c) 99 to 100 mol % based on the components ii-a to ii-b of 1,3-propanediol or 1,4-butanediol; ii-d) 0% to 1% by weight based on the components ii-a to ii-c of a chain extender and/or branching agent; iii) 0% to 35% by weight based on the total weight of the components i to iv of polylactic acid; iv) 10% to 35% by weight based on the total weight of the components i to iv of at least one surface-modified silicate selected from the group consisting of: kaolin, muscovite, montmorillonite, tal
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: August 2, 2022
    Assignee: BASF SE
    Inventors: Maximilian Lehenmeier, Martin Bussmann, Norbert Effen, Johannes Klaus Sprafke, Gabriel Skupin
  • Publication number: 20220176611
    Abstract: The invention relates to the use of a thermoplastic polymer having a melting point below 220° C. as additive in polybutylene terephthalate molding compositions for reducing the necking upon elongation of sheets or films of the polybutylene terephthalate molding composition, preferably wherein the polybutylene terephthalate molding composition comprises a) 50 to 95 wt % of polybutylene terephthalate as component A, b) 5 to 50 wt % of the thermoplastic polymer having a melting point below 220° C., as component B, c) 0 to 45 wt % of filler as component C, d) 0 to 20 wt % of further additives as component D, wherein the total of components A to D is 100 wt %.
    Type: Application
    Filed: April 8, 2020
    Publication date: June 9, 2022
    Inventors: Maximilian Lehenmeier, Simon Kniesel, Erik Gubbels
  • Patent number: 11319407
    Abstract: The present invention relates to a continuous process for purifying a chain-extended aliphatic polyester constructed from aliphatic dicarboxylic acids and aliphatic diols in a degassing apparatus, wherein the crude polyester is degassed for 3 to 30 minutes at a pressure of 0.01 to 5 mbar in the presence of 1% to 7% by weight, based on the total weight of the crude polyester, of an entraining agent.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: May 3, 2022
    Assignee: BASF SE
    Inventors: Maximilian Lehenmeier, Norbert Effen, Gabriel Skupin, Rainer Naef
  • Publication number: 20220033645
    Abstract: The present invention relates to a process for producing a (co)polyester, wherein the (co)polyester at least partially consists of 1,4-butylene dicarboxylate units, in a degassing plant, wherein the crude (co)polyester is degassed in the presence of 0.1% to 5% by weight, based on the total weight of the input materials, of an entraining agent at a pressure between 5 to 300 mbar.
    Type: Application
    Filed: December 5, 2019
    Publication date: February 3, 2022
    Inventors: Jerome LOHMANN, Maximilian LEHENMEIER, Norbert EFFEN, Martin BUSSMANN, Michael Bernhard SCHICK, Timo Benjamin WITT
  • Publication number: 20210155792
    Abstract: The present invention relates to an injection molded article comprising: i) 30% to 90% by weight based on the total weight of the components i to iii of a biodegradable polyester comprising: i-a) 90 to 100 mol % based on the components a to b of succinic acid; i-b) 0 to 10 mol % based on the components a to b of one or more C6-C20 dicarboxylic acids; i-c) 99 to 100 mol % based on the components a to b of 1,3-propanediol or 1,4-butanediol; i-d) 0% to 1% by weight based on the components a to c of a chain extender and/or branching agent; ii) 0% to 35% by weight based on the total weight of the components i to iii of polylactic acid; iii) 10% to 35% by weight based on the total weight of the components i to iii of at least one methacryloylsilane- or vinylsilane-modified silicate selected from the group consisting of: kaolin, muscovite, montmorillonite, talc and wollastonite.
    Type: Application
    Filed: August 9, 2018
    Publication date: May 27, 2021
    Inventors: Maximilian LEHENMEIER, Martin BUSSMANN, Norbert EFFEN, Johannes Klaus SPRAFKE, Gabriel SKUPIN
  • Publication number: 20200362103
    Abstract: The present invention relates to a continuous process for purifying a chain-extended aliphatic polyester constructed from aliphatic dicarboxylic acids and aliphatic diols in a degassing apparatus, wherein the crude polyester is degassed for 3 to 30 minutes at a pressure of 0.01 to 5 mbar in the presence of 1% to 7% by weight, based on the total weight of the crude polyester, of an entraining agent.
    Type: Application
    Filed: November 15, 2018
    Publication date: November 19, 2020
    Inventors: Maximilian LEHENMEIER, Norbert EFFEN, Gabriel SKUPIN, Rainer NAEF
  • Publication number: 20200362101
    Abstract: The invention relates to a continuous process for producing an aliphatic polyester constructed from aliphatic dicarboxylic acids and aliphatic diols comprising the steps of a) esterification, b) polycondensation and optionally c) chain extension, characterized in that during step b) in which the polycondenser functions as a degassing apparatus (B) and/or b?) after the polycondensation in an additional degassing apparatus (B?) the crude polyester is degassed at a pressure of 0.01 to 5 mbar in the presence of 1% to 7% by weight, based on the total weight of the crude polyester of water, introduced into the gas space of the degassing apparatus B and/or B? as an entraining agent.
    Type: Application
    Filed: November 15, 2018
    Publication date: November 19, 2020
    Inventors: Maximilian LEHENMEIER, Norbert EFFEN, Gabriel SKUPIN
  • Publication number: 20200255655
    Abstract: The present invention relates to an injection molded article comprising: i) 27% to 87% by weight based on the total weight of the components i to iv of a polyester constructed from aliphatic dicarboxylic acids and aliphatic diols; ii) 3% to 15% by weight based on the total weight of the components i to iv of an aliphatic-aromatic polyester comprising: ii-a) 30 to 70 mol % based on the components ii-a to ii-b of a C6-C18-dicarboxylic acid; ii-b) 30 to 70 mol % based on the components ii-a to ii-b of terephthalic acid; ii-c) 99 to 100 mol % based on the components ii-a to ii-b of 1,3-propanediol or 1,4-butanediol; ii-d) 0% to 1% by weight based on the components ii-a to ii-c of a chain extender and/or branching agent; iii) 0% to 35% by weight based on the total weight of the components i to iv of polylactic acid; iv) 10% to 35% by weight based on the total weight of the components i to iv of at least one surface-modified silicate selected from the group consisting of: kaolin, muscovite, montmorillonite, tal
    Type: Application
    Filed: August 9, 2018
    Publication date: August 13, 2020
    Inventors: Maximilian LEHENMEIER, Martin BUSSMANN, Norbert EFFEN, Johannes Klaus SPRAFKE, Gabriel SKUPIN
  • Patent number: 9914832
    Abstract: The present invention relates to an item produced by thermoforming, comprising: i) from 45 to 59% by weight, based on the total weight of components i to iv, of a biodegradable polyester comprising: i-a) from 90 to 100 mol %, based on components i-a to i-b, of succinic acid; i-b) from 0 to 10 mol %, based on components i-a to i-b, of one or more C6-C20 dicarboxylic acids; i-c) from 98 to 102 mol %, based on components i-a to i-b, of 1,3-propanediol or 1,4-butanediol; i-d) from 0.05 to 1% by weight, based on components i-a to i-c, of a chain extender or branching agent; ii) from 5 to 14% by weight, based on the total weight of components i to iv, of an aliphatic-aromatic polyester comprising: ii-a) from 30 to 70 mol %, based on components ii-a to ii-b, of a C6-C18-dicarboxylic acid; ii-b) from 30 to 70 mol %, based on components ii-a to ii-b, of terephthalic acid; ii-c) from 98 to 100 mol %, based on components ii-a to ii-b, of 1,3-propanediol or 1,4-butanediol; ii-d) from 0.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: March 13, 2018
    Assignee: BASF SE
    Inventors: Maximilian Lehenmeier, Gabriel Skupin, Martin Bussmann
  • Publication number: 20170260388
    Abstract: The present invention relates to an item produced by thermoforming, comprising: i) from 45 to 59% by weight, based on the total weight of components i to iv, of a biodegradable polyester comprising: i-a) from 90 to 100 mol %, based on components i-a to i-b, of succinic acid; i-b) from 0 to 10 mol %, based on components i-a to i-b, of one or more C6-C20 dicarboxylic acids; i-c) from 98 to 102 mol %, based on components i-a to i-b, of 1,3-propanediol or 1,4-butanediol; i-d) from 0.05 to 1% by weight, based on components i-a to i-c, of a chain extender or branching agent; ii) from 5 to 14% by weight, based on the total weight of components i to iv, of an aliphatic-aromatic polyester comprising: ii-a) from 30 to 70 mol %, based on components ii-a to ii-b, of a C6-C18-dicarboxylic acid; ii-b) from 30 to 70 mol %, based on components ii-a to ii-b, of terephthalic acid; ii-c) from 98 to 100 mol %, based on components ii-a to ii-b, of 1,3-propanediol or 1,4-butanediol; ii-d) from 0.
    Type: Application
    Filed: April 29, 2015
    Publication date: September 14, 2017
    Inventors: Maximilian LEHENMEIER, Gabriel SKUPIN, Martin BUSSMANN
  • Publication number: 20160311203
    Abstract: The present invention relates to a biodegradable polymer mixture comprising: i) from 55 to 90% by weight, based on components i and ii, of a polyglycolic acid (PGA) and ii) from 10 to 45% by weight, based on components i and ii, of at least one bio-degradable polyester formed from aliphatic or from aliphatic and aromatic di-carboxylic acids and from aliphatic diols. The invention further relates to single-or multilayer foils comprising these polymer mixtures, and to the use of the foils for food-or-drink packaging.
    Type: Application
    Filed: December 5, 2014
    Publication date: October 27, 2016
    Applicant: BASF SE
    Inventors: Motonori YAMAMOTO, Siomon A. GRUENER, Maximilian LEHENMEIER
  • Patent number: 9018318
    Abstract: A macrocycle based on ?-diketimines, a process for preparing the inventive macrocycle, an uncharged macrocyclic dimetallic complex based on the inventive macrocycle, and a process for preparing the uncharged macrocyclic dimetallic complex, the use of the uncharged macrocyclic dimetallic complex as a polymerization catalyst in the polymerization of carbon dioxide with one or more epoxides, a process for preparing polycarbonates by reacting carbon dioxide with one or more epoxides in the presence of the inventive uncharged macrocyclic dimetallic complex, and a polycarbonate prepared by the process according to the invention.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: April 28, 2015
    Assignee: BASF SE Corporation
    Inventors: Peter Deglmann, Anna Katharina Brym, Bernhard Rieger, Maximilian Lehenmeier, Stephan Klaus