Patents by Inventor Mayumi Kiyono

Mayumi Kiyono has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9302203
    Abstract: The chromatographic separation material is a cyclofructan or a derivative of cyclofructan covalently bonded to a cross-linked, organic polymer. The separation material works well in hydrophilic interaction liquid chromatography.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: April 5, 2016
    Assignees: MITSUBISHI CHEMICAL CORPORATION, AZYP, LLC
    Inventors: Haixiao Qiu, Daniel W. Armstrong, Mayumi Kiyono-Shimobe
  • Patent number: 8709133
    Abstract: The invention concerns carbon molecular sieve membranes (“CMS membranes”), and more particularly the use of such membranes in gas separation. In particular, the present disclosure concerns an advantageous method for producing CMS membranes with desired selectivity and permeability properties. By controlling and selecting the oxygen concentration in the pyrolysis atmosphere used to produce CMS membranes, membrane selectivity and permeability can be adjusted. Additionally, oxygen concentration can be used in conjunction with pyrolysis temperature to further produce tuned or optimized CMS membranes.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: April 29, 2014
    Assignees: Georgia Tech Research Corporation, Shell Oil Company
    Inventors: Mayumi Kiyono, Paul Jason Williams, William John Koros
  • Publication number: 20140021136
    Abstract: The chromatographic separation material is a cyclofructan or a derivative of cyclofructan covalently bonded to a cross-linked, organic polymer. The separation material works well in hydrophilic interaction liquid chromatography.
    Type: Application
    Filed: July 27, 2012
    Publication date: January 23, 2014
    Inventors: Haixiao QIU, Daniel W. ARMSTRONG, Mayumi KIYONO-SHIMOBE
  • Publication number: 20130305921
    Abstract: The invention concerns carbon molecular sieve membranes (“CMS membranes”), and more particularly the use of such membranes in gas separation. In particular, the present disclosure concerns an advantageous method for producing CMS membranes with desired selectivity and permeability properties. By controlling and selecting the oxygen concentration in the pyrolysis atmosphere used to produce CMS membranes, membrane selectivity and permeability can be adjusted. Additionally, oxygen concentration can be used in conjunction with pyrolysis temperature to further produce tuned or optimized CMS membranes.
    Type: Application
    Filed: June 28, 2013
    Publication date: November 21, 2013
    Inventors: Mayumi Kiyono, Paul Jason Williams, William John Koros
  • Patent number: 8486179
    Abstract: The invention concerns carbon molecular sieve membranes (“CMS membranes”), and more particularly the use of such membranes in gas separation. In particular, the present disclosure concerns an advantageous method for producing CMS membranes with desired selectivity and permeability properties. By controlling and selecting the oxygen concentration in the pyrolysis atmosphere used to produce CMS membranes, membrane selectivity and permeability can be adjusted. Additionally, oxygen concentration can be used in conjunction with pyrolysis temperature to further produce tuned or optimized CMS membranes.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: July 16, 2013
    Assignees: Georgia Tech Research Corporation, Shell Oil Company
    Inventors: Mayumi Kiyono, Paul Jason Williams, William John Koros
  • Publication number: 20110100211
    Abstract: The invention concerns carbon molecular sieve membranes (“CMS membranes”), and more particularly the use of such membranes in gas separation. In particular, the present disclosure concerns an advantageous method for producing CMS membranes with desired selectivity and permeability properties. By controlling and selecting the oxygen concentration in the pyrolysis atmosphere used to produce CMS membranes, membrane selectivity and permeability can be adjusted. Additionally, oxygen concentration can be used in conjunction with pyrolysis temperature to further produce tuned or optimized CMS membranes.
    Type: Application
    Filed: June 17, 2010
    Publication date: May 5, 2011
    Inventors: Mayumi Kiyono, Paul Jason Williams, William John Koros