Patents by Inventor Mayurachat Ning Gulari

Mayurachat Ning Gulari has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10688298
    Abstract: An implantable electrode system of is disclosed that includes a conductive electrode layer, an interconnect coupled to the electrode layer, an insulator that insulates the interconnect, and an anchor that more securely fixes the electrode layer in place. This structure is particularly useful with the electrode layer being a neural interface that is configured to provide either a recording or stimulating function. A method for forming such an implantable electrode system includes forming an interconnect over a base layer, forming an anchoring structure over the base layer, depositing an insulating material layer over the interconnect structure and over the anchoring structure, exposing a portion of the interconnect structure, forming an electrode layer over the insulating layer, the electrode layer contacting the exposed portion of the interconnect structure.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: June 23, 2020
    Assignee: NEURONEXUS TECHNOLOGIES, INC.
    Inventors: David S. Pellinen, Mayurachat Ning Gulari, Jamille Farraye Hetke, David J. Anderson, Daryl R. Kipke, Rio J. Vetter
  • Publication number: 20170326382
    Abstract: Waveguide neural interface devices and methods for fabricating such devices are provided herein. An exemplary interface device includes a neural device comprising an exterior neural device sidewall extending to a distal end portion of the neural device, an array of electrode sites supported by a first face of the neural device sidewall. The array includes a recording electrode site. The exemplary interface device further includes a waveguide extending along the neural device, the waveguide having a distal end to emit light to illuminate targeted tissue adjacent to the recording electrode site, and a light redirecting element disposed at the distal end of the waveguide. The light redirecting element redirects light traveling through the waveguide in a manner that avoids direct illumination of the recording electrode site on the first face of the neural device sidewall.
    Type: Application
    Filed: May 8, 2017
    Publication date: November 16, 2017
    Applicant: NeuroNexus Technologies, Inc.
    Inventors: John P. Seymour, Mayurachat Ning Gulari, Daryl R. Kipke, KC Kong
  • Publication number: 20170252553
    Abstract: An implantable electrode system of is disclosed that includes a conductive electrode layer, an interconnect coupled to the electrode layer, an insulator that insulates the interconnect, and an anchor that more securely fixes the electrode layer in place. This structure is particularly useful with the electrode layer being a neural interface that is configured to provide either a recording or stimulating function. A method for forming such an implantable electrode system includes forming an interconnect over a base layer, forming an anchoring structure over the base layer, depositing an insulating material layer over the interconnect structure and over the anchoring structure, exposing a portion of the interconnect structure, forming an electrode layer over the insulating layer, the electrode layer contacting the exposed portion of the interconnect structure.
    Type: Application
    Filed: May 22, 2017
    Publication date: September 7, 2017
    Inventors: David S. Pellinen, Mayurachat Ning Gulari, Jamille Farraye Hetke, David J. Anderson, Daryl R. Kipke, Rio J. Vetter
  • Patent number: 9656054
    Abstract: The implantable electrode system of the preferred embodiments includes a conductor, an interconnect coupled to the conductor, an insulator that insulates the interconnect, and an anchor that overlaps a peripheral edge of the electrode layer. The anchor is mechanically interlocked with the insulator. This structure is particularly useful with the electrode layer being a neural interface that is configured to provide either a recording and stimulating function.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: May 23, 2017
    Assignee: NEURONEXUS TECHNOLOGIES, INC.
    Inventors: David S. Pellinen, Mayurachat Ning Gulari, Jamille Farraye Hetke, David J. Anderson, Daryl R. Kipke, Rio J. Vetter
  • Patent number: 9643027
    Abstract: A waveguide neural interface device including: a neural device implantable in tissue and including an array of electrode sites that electrically communicate with their surroundings, in which the array of electrode sites includes at least one recording electrode site; and a waveguide, coupled to the neural device, that carries light along a longitudinal axis and includes a light directing element that redirects the carried light from the waveguide to illuminate selectively targeted tissue, in which at least a portion of the redirected light is directed laterally away from the longitudinal axis and the recording electrode site is configured to sample illuminated tissue. A method for assembling a waveguide neural interface device is also described.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: May 9, 2017
    Assignee: NEURONEXUS TECHNOLOGIES, INC.
    Inventors: John P. Seymour, Mayurachat Ning Gulari, Daryl R. Kipke, Kc Kong
  • Patent number: 9304280
    Abstract: A compact lens system for imaging a sample comprising a substrate having a well formed therein. Index matching material is disposed in the well and a lens member is further disposed in the well in optical contact with the index matching material disposed in the well. A spacer member extends from at least one of the substrate and the lower transparent member to define a spacing from a focal point of the lens member, wherein the lens member and index matching material cooperate to image a sample disposed below the lower transparent member.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: April 5, 2016
    Assignee: The Regents Of The University Of Michigan
    Inventors: Mayurachat Ning Gulari, Mostafa Ghannad-Rezaie, Anurag Tripathi, Nikolaos Chronis
  • Patent number: 9289142
    Abstract: One embodiment of the invention includes an implantable electrode lead system that includes a series of shims stacked upon each other, a series of first components, and a series of second components connected to the series of first components through a series of connectors. One of the first components extends from one of the shims, and another of the first components extends from another one of the shims. The shims position the first components in a three dimensional arrangement.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: March 22, 2016
    Assignee: NeuroNexus Technologies, Inc.
    Inventors: Kc Kong, Jamille Farraye Hetke, James A. Wiler, David S. Pellinen, Mayurachat Ning Gulari
  • Patent number: 9265928
    Abstract: The implantable electrode system of the preferred embodiments includes a conductor, an interconnect coupled to the conductor, an insulator that insulates the interconnect, and an anchor that is connected to both the conductor and the insulating element. The anchor is mechanically interlocked with at least one of the conductor and the insulator.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: February 23, 2016
    Assignee: Greatbatch Ltd.
    Inventors: David S. Pellinen, Mayurachat Ning Gulari, Jamille Farraye Hetke, David J. Anderson, Daryl R. Kipke, Rio J. Vetter
  • Patent number: 9259567
    Abstract: A method of manufacturing an implantable electronic device, including: providing a silicon wafer; building a plurality of layers coupled to the wafer including an oxide layer coupled to the silicon wafer; a first reactive parylene layer coupled to the oxide layer, an electrode layer coupled to the first reactive parylene layer, and a second reactive parylene layer, coupled to the electrode layer, that chemically bonds to the first reactive polymer layer, and a second polymer layer coupled to the second reactive parylene layer; coating the plurality of layers with an encapsulation, and modifying the encapsulation and at least one of the plurality of layers to expose an electrode site in the electrode layer.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: February 16, 2016
    Assignee: The Regents Of The University Of Michigan
    Inventors: John Seymour, Mayurachat Ning Gulari, Joerg Lahann, Daryl Kipke
  • Publication number: 20150201855
    Abstract: The implantable electrode system of the preferred embodiments includes a conductor, an interconnect coupled to the conductor, an insulator that insulates the interconnect, and an anchor that overlaps a peripheral edge of the electrode layer. The anchor is mechanically interlocked with the insulator. This structure is particularly useful with the electrode layer being a neural interface that is configured to provide either a recording and stimulating function.
    Type: Application
    Filed: April 1, 2015
    Publication date: July 23, 2015
    Inventors: David S. Pellinen, Mayurachat Ning Gulari, Jamille Farraye Hetke, David J. Anderson, Daryl R. Kipke, Rio J. Vetter
  • Publication number: 20150047179
    Abstract: A waveguide neural interface device including: a neural device implantable in tissue and including an array of electrode sites that electrically communicate with their surroundings, in which the array of electrode sites includes at least one recording electrode site; and a waveguide, coupled to the neural device, that carries light along a longitudinal axis and includes a light directing element that redirects the carried light from the waveguide to illuminate selectively targeted tissue, in which at least a portion of the redirected light is directed laterally away from the longitudinal axis and the recording electrode site is configured to sample illuminated tissue. A method for assembling a waveguide neural interface device is also described.
    Type: Application
    Filed: October 23, 2014
    Publication date: February 19, 2015
    Inventors: John P. Seymour, Mayurachat Ning Gulari, Daryl R. Kipke, Kc Kong
  • Publication number: 20140268319
    Abstract: A compact lens system for imaging a sample comprising a substrate having a well formed therein. Index matching material is disposed in the well and a lens member is further disposed in the well in optical contact with the index matching material disposed in the well. A spacer member extends from at least one of the substrate and the lower transparent member to define a spacing from a focal point of the lens member, wherein the lens member and index matching material cooperate to image a sample disposed below the lower transparent member.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Mayurachat Ning GULARI, Mostafa GHANNAD-REZAIE, Anurag TRIPATHI, Nikolaos CHRONIS
  • Patent number: 8703537
    Abstract: The method of the preferred embodiments includes the steps of providing a base having a frame portion and a center portion; building a preliminary structure coupled to the base; removing a portion of the preliminary structure to define a series of devices and a plurality of bridges; removing the center portion of the base such that the frame portion defines an open region, wherein the plurality of bridges suspend the series of devices in the open region defined by the frame; and encapsulating the series of devices. The method is preferably designed for the manufacture of semiconductor devices, and more specifically for the manufacture of encapsulated implantable electrodes. The method, however, may be alternatively used in any suitable environment and for any suitable reason.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: April 22, 2014
    Assignee: NeuroNexus Technologies, Inc.
    Inventors: David S. Pellinen, Jamille Farraye Hetke, Daryl R. Kipke, Kc Kong, Rio J. Vetter, Mayurachat Ning Gulari
  • Publication number: 20140039589
    Abstract: A method of manufacturing an implantable electronic device, including: providing a silicon wafer; building a plurality of layers coupled to the wafer including an oxide layer coupled to the silicon wafer; a first reactive parylene layer coupled to the oxide layer, an electrode layer coupled to the first reactive parylene layer, and a second reactive parylene layer, coupled to the electrode layer, that chemically bonds to the first reactive polymer layer, and a second polymer layer coupled to the second reactive parylene layer; coating the plurality of layers with an encapsulation, and modifying the encapsulation and at least one of the plurality of layers to expose an electrode site in the electrode layer.
    Type: Application
    Filed: October 11, 2013
    Publication date: February 6, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: JOHN SEYMOUR, MAYURACHAT NING GULARI, JOERG LAHANN, DARYL KIPKE
  • Publication number: 20140027888
    Abstract: The method of the preferred embodiments includes the steps of providing a base having a frame portion and a center portion; building a preliminary structure coupled to the base; removing a portion of the preliminary structure to define a series of devices and a plurality of bridges; removing the center portion of the base such that the frame portion defines an open region, wherein the plurality of bridges suspend the series of devices in the open region defined by the frame; and encapsulating the series of devices. The method is preferably designed for the manufacture of semiconductor devices, and more specifically for the manufacture of encapsulated implantable electrodes. The method, however, may be alternatively used in any suitable environment and for any suitable reason.
    Type: Application
    Filed: September 18, 2013
    Publication date: January 30, 2014
    Applicant: NeuroNexus Technologies, Inc.
    Inventors: David S. Pellinen, Jamille Farraye Hetke, Daryl R. Kipke, Kc Kong, Rio J. Vetter, Mayurachat Ning Gulari
  • Patent number: 8255061
    Abstract: A microsystem comprising a substrate having an aperture formed therethrough. The aperture includes a first cross-section and a second cross-section—the first cross-section being smaller than the second cross-section to define a ledge therebetween. A probe member is disposed within the aperture of the substrate, such that a backend of the probe member defines a cross-section that is greater than the first cross-section of the aperture and smaller than the second cross-section such that the probe member engages the ledge. A plurality of probe shanks extend from the probe member. Each of the probe shanks includes a plurality of leads disposed there along. Each of the leads extending from the probe shanks to an opposing side of the probe member.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: August 28, 2012
    Assignee: The Regents of The University of Michigan
    Inventors: Gayatri Eadara Perlin, Brendan E. Casey, Mayurachat Ning Gulari, Kensall D. Wise
  • Patent number: 8193645
    Abstract: A device includes a first device structure having a semiconductor platform, and a second device structure having a microstructure spaced from the semiconductor platform. The device further includes a cable having a plurality of beams to couple the microstructure to the first device structure. Each beam of the plurality of beams has a polymer coating and a serpentine-shaped region.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: June 5, 2012
    Assignee: The Regents of the University of Michigan
    Inventors: Kensall D. Wise, Mayurachat Ning Gulari, Ying Yao
  • Publication number: 20110112591
    Abstract: A waveguide neural interface device including: a neural device implantable in tissue and including an array of electrode sites that electrically communicate with their surroundings, in which the array of electrode sites includes at least one recording electrode site; and a waveguide, coupled to the neural device, that carries light along a longitudinal axis and includes a light directing element that redirects the carried light from the waveguide to illuminate selectively targeted tissue, in which at least a portion of the redirected light is directed laterally away from the longitudinal axis and the recording electrode site is configured to sample illuminated tissue. A method for assembling a waveguide neural interface device is also described.
    Type: Application
    Filed: November 5, 2010
    Publication date: May 12, 2011
    Inventors: John P. Seymour, Mayurachat Ning Gulari, Daryl R. Kipke, K. C. Kong
  • Patent number: 7790493
    Abstract: Disclosed herein is a method of fabricating a device having a microstructure. The method includes forming a connector on a semiconductor substrate, coating the connector with a polymer layer, and immersing the semiconductor substrate and the coated connector in an etchant solution to form the microstructure from the semiconductor substrate and to release the coated connector and the microstructure from the semiconductor substrate such that the microstructure remains coupled to a further element of the device via the coated connector. In some cases, the microstructure is defined by forming an etch stop in the semiconductor substrate, and the microstructure and the semiconductor substrate are coated with a polymer layer, which may then be selectively patterned. The microstructure may then be released from the semiconductor substrate in accordance with the etch stop.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: September 7, 2010
    Assignee: The Regents of the University of Michigan
    Inventors: Kensall D. Wise, Mayurachat Ning Gulari, Ying Yao
  • Publication number: 20100145422
    Abstract: A method of manufacturing an implantable electronic device, including: providing a silicon wafer; building a plurality of layers coupled to the wafer including an oxide layer coupled to the silicon wafer; a first reactive parylene layer coupled to the oxide layer, an electrode layer coupled to the first reactive parylene layer, and a second reactive parylene layer, coupled to the electrode layer, that chemically bonds to the first reactive polymer layer, and a second polymer layer coupled to the second reactive parylene layer; coating the plurality of layers with an encapsulation, and modifying the encapsulation and at least one of the plurality of layers to expose an electrode site in the electrode layer.
    Type: Application
    Filed: November 16, 2009
    Publication date: June 10, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: John Seymour, Mayurachat Ning Gulari, Joerg Lahann, Daryl Kipke