Patents by Inventor Mazin M. Fathi

Mazin M. Fathi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210363433
    Abstract: Embodiments of the disclosure provide an aqueous reforming system and a method for upgrading heavy hydrocarbons. A hydrocarbon feed and a surfactant stream are combined to produce a first precursor stream. The first precursor stream and an alkali feed are combined to produce a second precursor stream. The second precursor stream and a transition metal feed are combined to produce a catalytic emulsion stream. The catalytic emulsion stream is heated to produce a catalytic suspension and a decomposition gas, where the decomposition gas is separated by a first separator. The catalytic suspension is combined with a preheated water stream to produce an aqueous reformer feed. The aqueous reformer feed is introduced to an aqueous reformer such that the heavy hydrocarbons undergo conversion reactions to produce an effluent stream. The effluent stream is introduced to a second separator to produce a heavy stream and a light stream.
    Type: Application
    Filed: August 9, 2021
    Publication date: November 25, 2021
    Applicant: Saudi Arabian Oil Company
    Inventors: Mazin M. FATHI, Ki-Hyouk CHOI, Mohammed R. ALDOSSARY
  • Patent number: 11149216
    Abstract: An integrated hydrothermal process for upgrading heavy oil includes the steps of mixing a heated water stream and a heated feed in a mixer to produce a mixed fluid, introducing the mixed stream to a reactor unit to produce a reactor effluent that includes light fractions, heavy fractions, and water, cooling the reactor effluent in a cooling device to produce a cooled fluid, depressurizing the cooled fluid in a depressurizing device to produce a depressurized fluid, introducing the depressurized fluid to a flash drum configured to separate the depressurized fluid into a light fraction stream and a heavy fraction stream. The light fraction stream includes the light fractions and water and the heavy fraction stream includes the heavy fractions and water. The process further includes the step of introducing the heavy fraction stream to an aqueous reforming unit that includes a catalyst to produce an aqueous reforming outlet.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: October 19, 2021
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Ki-Hyouk Choi, Mazin M. Fathi, Bader M. Alotaibi, Ali S. Al-Nasir
  • Patent number: 11118439
    Abstract: A process directed toward enhanced oil recovery in an oil-containing formation, the process comprising the steps of removing a water/oil emulsion from an oil-water separator, wherein the water/oil emulsion comprises a stable emulsion, wherein a temperature of the water/oil emulsion is less than 120 deg C., wherein a pressure of the water/oil emulsion is greater than the saturation pressure at the temperature of the water/oil emulsion, wherein the water/oil emulsion comprises an alkali content, and introducing the water/oil emulsion into the oil-containing formation as an enhanced oil recovery stream, wherein the enhanced oil recovery stream is used in enhanced oil recovery.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: September 14, 2021
    Inventors: Mazin M. Fathi, Ki-Hyouk Choi, Muneef F. AlQarzouh
  • Patent number: 11118121
    Abstract: Embodiments of the disclosure provide an aqueous reforming system and a method for upgrading heavy hydrocarbons. A hydrocarbon feed and a surfactant stream are combined to produce a first precursor stream. The first precursor stream and an alkali feed are combined to produce a second precursor stream. The second precursor stream and a transition metal feed are combined to produce a catalytic emulsion stream. The catalytic emulsion stream is heated to produce a catalytic suspension and a decomposition gas, where the decomposition gas is separated by a first separator. The catalytic suspension is combined with a preheated water stream to produce an aqueous reformer feed. The aqueous reformer feed is introduced to an aqueous reformer such that the heavy hydrocarbons undergo conversion reactions to produce an effluent stream. The effluent stream is introduced to a second separator to produce a heavy stream and a light stream.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: September 14, 2021
    Inventors: Mazin M. Fathi, Ki-Hyouk Choi, Mohammed R. Aldossary
  • Publication number: 20210189264
    Abstract: A method for producing alkene gases from a cracked product effluent, the method comprising the steps of introducing the cracked product effluent to a fractionator unit, separating the cracked product effluent in the fractionator to produce a cracked light stream and a cracked residue stream, wherein the cracked light stream comprises the alkene gases selected from the group consisting of ethylene, propylene, butylene, and combinations of the same, mixing the cracked residue stream and the heavy feed in the heavy mixer to produce a combined supercritical process feed, and upgrading the combined supercritical process feed in the supercritical water process to produce a supercritical water process (SWP)-treated light product and a SWP-treated heavy product, wherein the SWP-treated heavy product comprises reduced amounts of olefins and asphaltenes relative to the cracked residue stream such that the SWP-treated heavy product exhibits increased stability relative to the cracked residue stream.
    Type: Application
    Filed: March 5, 2021
    Publication date: June 24, 2021
    Applicant: Saudi Arabian Oil Company
    Inventors: Ki-Hyouk CHOI, Mazin M. FATHI, Muneef F. ALQARZOUH, Bandar K. ALOTAIBI
  • Publication number: 20210189261
    Abstract: Embodiments of the disclosure provide an aqueous reforming system and a method for upgrading heavy hydrocarbons. A hydrocarbon feed and a surfactant stream are combined to produce a first precursor stream. The first precursor stream and an alkali feed are combined to produce a second precursor stream. The second precursor stream and a transition metal feed are combined to produce a catalytic emulsion stream. The catalytic emulsion stream is heated to produce a catalytic suspension and a decomposition gas, where the decomposition gas is separated by a first separator. The catalytic suspension is combined with a preheated water stream to produce an aqueous reformer feed. The aqueous reformer feed is introduced to an aqueous reformer such that the heavy hydrocarbons undergo conversion reactions to produce an effluent stream. The effluent stream is introduced to a second separator to produce a heavy stream and a light stream.
    Type: Application
    Filed: December 19, 2019
    Publication date: June 24, 2021
    Applicant: SAUDI ARABIAN OIL COMPANY
    Inventors: Mazin M. FATHI, Ki-Hyouk CHOI, Mohammed R. ALDOSSARY
  • Patent number: 11034897
    Abstract: A process for producing an upgraded oil blend, the process comprising the steps of introducing the combined stream to a supercritical reactor, wherein a volumetric ratio of water to oil in the combined stream is in the range between 10:1 and 2:1; reacting the combined stream in the supercritical water reactor to produce a reactor effluent, wherein the oil undergoes conversion reactions in the supercritical reactor such that the reactor effluent comprises upgraded bio-oil and upgraded heavy oil; reducing a temperature of the reactor effluent to produce a cooled effluent; operating the soaker to produce a product effluent, wherein a temperature in the soaker is between 250° C. and 350° C., wherein decarboxylation reactions occur in the soaker; and separating the product effluent in the separation unit to produce and the upgraded oil blend, wherein the upgraded oil blend comprises upgraded bio-oil and upgraded heavy oil.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: June 15, 2021
    Inventors: Khalid Al Kaabi, Ki-Hyouk Choi, Mazin M. Fathi
  • Publication number: 20210172311
    Abstract: A process directed toward enhanced oil recovery in an oil-containing formation, the process comprising the steps of removing a water/oil emulsion from an oil-water separator, wherein the water/oil emulsion comprises a stable emulsion, wherein a temperature of the water/oil emulsion is less than 120 deg C., wherein a pressure of the water/oil emulsion is greater than the saturation pressure at the temperature of the water/oil emulsion, wherein the water/oil emulsion comprises an alkali content, and introducing the water/oil emulsion into the oil-containing formation as an enhanced oil recovery stream, wherein the enhanced oil recovery stream is used in enhanced oil recovery.
    Type: Application
    Filed: December 6, 2019
    Publication date: June 10, 2021
    Inventors: Mazin M. Fathi, Ki-Hyouk Choi, Muneef F. AlQarzouh
  • Publication number: 20210130707
    Abstract: An integrated upgrading process for upgrading a heavy oil, the process comprising the steps of introducing a heavy oil to a visbreaker unit; processing the heavy oil in the visbreaker unit to produce a visbreaker product stream; feeding the visbreaker product stream to a fractionator; separating the visbreaker product stream in the fractionator to produce a bottoms stream, a gas oil stream, a naphtha stream, and a gas product stream; feeding the bottoms stream to a supercritical water unit; and processing the bottoms stream in the supercritical water unit to produce an upgraded bottoms stream.
    Type: Application
    Filed: January 13, 2021
    Publication date: May 6, 2021
    Applicant: Saudi Arabian Oil Company
    Inventors: Ki-Hyouk CHOI, Mazin M. FATHI, Mohnnad H. ALABSI, Vinod RAMASESHAN
  • Patent number: 10975317
    Abstract: A method for producing alkene gases from a cracked product effluent, the method comprising the steps of introducing the cracked product effluent to a fractionator unit, separating the cracked product effluent in the fractionator to produce a cracked light stream and a cracked residue stream, wherein the cracked light stream comprises the alkene gases selected from the group consisting of ethylene, propylene, butylene, and combinations of the same, mixing the cracked residue stream and the heavy feed in the heavy mixer to produce a combined supercritical process feed, and upgrading the combined supercritical process feed in the supercritical water process to produce a supercritical water process (SWP)-treated light product and a SWP-treated heavy product, wherein the SWP-treated heavy product comprises reduced amounts of olefins and asphaltenes relative to the cracked residue stream such that the SWP-treated heavy product exhibits increased stability relative to the cracked residue stream.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: April 13, 2021
    Inventors: Ki-Hyouk Choi, Mazin M. Fathi, Muneef F. Alqarzouh, Bandar K. Alotaibi
  • Patent number: 10927313
    Abstract: An integrated upgrading process for upgrading a heavy oil, the process comprising the steps of introducing a heavy oil to a visbreaker unit; processing the heavy oil in the visbreaker unit to produce a visbreaker product stream; feeding the visbreaker product stream to a fractionator; separating the visbreaker product stream in the fractionator to produce a bottoms stream, a gas oil stream, a naphtha stream, and a gas product stream; feeding the bottoms stream to a supercritical water unit; and processing the bottoms stream in the supercritical water unit to produce an upgraded bottoms stream.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: February 23, 2021
    Inventors: Ki-Hyouk Choi, Mazin M. Fathi, Mohnnad H. Alabsi, Vinod Ramaseshan
  • Publication number: 20200339893
    Abstract: An integrated hydrothermal process for upgrading heavy oil includes the steps of mixing a heated water stream and a heated feed in a mixer to produce a mixed fluid, introducing the mixed stream to a reactor unit to produce a reactor effluent that includes light fractions, heavy fractions, and water, cooling the reactor effluent in a cooling device to produce a cooled fluid, depressurizing the cooled fluid in a depressurizing device to produce a depressurized fluid, introducing the depressurized fluid to a flash drum configured to separate the depressurized fluid into a light fraction stream and a heavy fraction stream. The light fraction stream includes the light fractions and water and the heavy fraction stream includes the heavy fractions and water. The process further includes the step of introducing the heavy fraction stream to an aqueous reforming unit that includes a catalyst to produce an aqueous reforming outlet.
    Type: Application
    Filed: July 14, 2020
    Publication date: October 29, 2020
    Applicant: Saudi Arabian Oil Company
    Inventors: Ki-Hyouk Choi, Mazin M. Fathi, Bader M. Alotaibi, Ali S. Al-Nasir
  • Patent number: 10752847
    Abstract: An integrated hydrothermal process for upgrading heavy oil includes the steps of mixing a heated water stream and a heated feed in a mixer to produce a mixed fluid, introducing the mixed stream to a reactor unit to produce a reactor effluent that includes light fractions, heavy fractions, and water, cooling the reactor effluent in a cooling device to produce a cooled fluid, depressurizing the cooled fluid in a depressurizing device to produce a depressurized fluid, introducing the depressurized fluid to a flash drum configured to separate the depressurized fluid into a light fraction stream and a heavy fraction stream. The light fraction stream includes the light fractions and water and the heavy fraction stream includes the heavy fractions and water. The process further includes the step of introducing the heavy fraction stream to an aqueous reforming unit that includes a catalyst to produce an aqueous reforming outlet.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: August 25, 2020
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Ki-Hyouk Choi, Mazin M. Fathi, Bader M. Alotaibi, Ali S. Al-Nasir
  • Publication number: 20200115644
    Abstract: A method for producing alkene gases from a cracked product effluent, the method comprising the steps of introducing the cracked product effluent to a fractionator unit, separating the cracked product effluent in the fractionator to produce a cracked light stream and a cracked residue stream, wherein the cracked light stream comprises the alkene gases selected from the group consisting of ethylene, propylene, butylene, and combinations of the same, mixing the cracked residue stream and the heavy feed in the heavy mixer to produce a combined supercritical process feed, and upgrading the combined supercritical process feed in the supercritical water process to produce a supercritical water process (SWP)-treated light product and a SWP-treated heavy product, wherein the SWP-treated heavy product comprises reduced amounts of olefins and asphaltenes relative to the cracked residue stream such that the SWP-treated heavy product exhibits increased stability relative to the cracked residue stream.
    Type: Application
    Filed: November 15, 2019
    Publication date: April 16, 2020
    Inventors: Ki-Hyouk Choi, Mazin M. Fathi, Muneef F. Alqarzouh, Bandar K. Alotaibi
  • Patent number: 10584285
    Abstract: A process for producing blown asphalt comprising the steps of mixing a heated hydrocarbon stream and a supercritical water in to produce a mixed stream, operating the supercritical water reactor to produce a reactor effluent, reducing the temperature of the reactor effluent in the cooler to produce a cooled effluent, feeding the cooled effluent through a depressurizing device to produce a depressurized stream, separating the depressurized stream in the flash drum to produce a light fraction stream and a heavy fraction stream, the heavy fraction stream contains a maltene fraction, an asphaltene fraction, and water, introducing the heavy fraction stream to a storage tank, withdrawing an oxidizing reactor feed from the storage tank, introducing the oxidizing reactor feed to an oxidation reactor, and operating the oxidation reactor at an oxidation temperature and an oxidation pressure to produce a product effluent that comprises an oxidized asphaltene fraction.
    Type: Grant
    Filed: February 18, 2019
    Date of Patent: March 10, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Ki-Hyouk Choi, Mazin M. Fathi
  • Patent number: 10577546
    Abstract: Processes for producing deasphalted oil are provided which involve combining a supercritical water stream with a pressurized, heated, hydrocarbon-based composition to create a combined feed stream, introducing the combined feed stream to a supercritical reactor to produce and upgraded product, and depressurizing the upgraded product. The depressurized upgraded product is separated into a light and a heavy fraction, where the heavy fraction has a greater concentration of asphaltene than the light fraction. The light fraction is passed to a separator to separate into a gas fraction, a paraffinic fraction, and a water fraction and the heavy fraction and the paraffinic fraction are combined to remove the asphaltene and produce deasphalted oil. In some embodiments, the paraffinic fraction is dewatered before combining with the heavy fraction.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: March 3, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Ki-Hyouk Choi, Mazin M. Fathi, Abdullah T. Alabdulhadi
  • Patent number: 10526552
    Abstract: A method for producing alkene gases from a cracked product effluent, the method comprising the steps of introducing the cracked product effluent to a fractionator unit, separating the cracked product effluent in the fractionator to produce a cracked light stream and a cracked residue stream, wherein the cracked light stream comprises the alkene gases selected from the group consisting of ethylene, propylene, butylene, and combinations of the same, mixing the cracked residue stream and the heavy feed in the heavy mixer to produce a combined supercritical process feed, and upgrading the combined supercritical process feed in the supercritical water process to produce a supercritical water process (SWP)-treated light product and a SWP-treated heavy product, wherein the SWP-treated heavy product comprises reduced amounts of olefins and asphaltenes relative to the cracked residue stream such that the SWP-treated heavy product exhibits increased stability relative to the cracked residue stream.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: January 7, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Ki-Hyouk Choi, Mazin M. Fathi, Muneef F. Alqarzouh, Bandar K. Alotaibi
  • Publication number: 20190316045
    Abstract: An integrated upgrading process for upgrading a heavy oil, the process comprising the steps of introducing a heavy oil to a visbreaker unit; processing the heavy oil in the visbreaker unit to produce a visbreaker product stream; feeding the visbreaker product stream to a fractionator; separating the visbreaker product stream in the fractionator to produce a bottoms stream, a gas oil stream, a naphtha stream, and a gas product stream; feeding the bottoms stream to a supercritical water unit; and processing the bottoms stream in the supercritical water unit to produce an upgraded bottoms stream.
    Type: Application
    Filed: April 11, 2018
    Publication date: October 17, 2019
    Applicant: Saudi Arabian Oil Company
    Inventors: Ki-Hyouk CHOI, Mazin M. FATHI, Mohnnad H. ALABSI, Vinod RAMASESHAN
  • Publication number: 20190185756
    Abstract: A process for producing blown asphalt comprising the steps of mixing a heated hydrocarbon stream and a supercritical water in to produce a mixed stream, operating the supercritical water reactor to produce a reactor effluent, reducing the temperature of the reactor effluent in the cooler to produce a cooled effluent, feeding the cooled effluent through a depressurizing device to produce a depressurized stream, separating the depressurized stream in the flash drum to produce a light fraction stream and a heavy fraction stream, the heavy fraction stream contains a maltene fraction, an asphaltene fraction, and water, introducing the heavy fraction stream to a storage tank, withdrawing an oxidizing reactor feed from the storage tank, introducing the oxidizing reactor feed to an oxidation reactor, and operating the oxidation reactor at an oxidation temperature and an oxidation pressure to produce a product effluent that comprises an oxidized asphaltene fraction.
    Type: Application
    Filed: February 18, 2019
    Publication date: June 20, 2019
    Applicant: SAUDI ARABIAN OIL COMPANY
    Inventors: Ki-Hyouk CHOI, Mazin M. FATHI
  • Patent number: 10246642
    Abstract: A process for producing blown asphalt comprising the steps of mixing a heated hydrocarbon stream and a supercritical water in to produce a mixed stream, operating the supercritical water reactor to produce a reactor effluent, reducing the temperature of the reactor effluent in the cooler to produce a cooled effluent, feeding the cooled effluent through a depressurizing device to produce a depressurized stream, separating the depressurized stream in the flash drum to produce a light fraction stream and a heavy fraction stream, the heavy fraction stream contains a maltene fraction, an asphaltene fraction, and water, introducing the heavy fraction stream to a storage tank, withdrawing an oxidizing reactor feed from the storage tank, introducing the oxidizing reactor feed to an oxidation reactor, and operating the oxidation reactor at an oxidation temperature and an oxidation pressure to produce a product effluent that comprises an oxidized asphaltene fraction.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: April 2, 2019
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Ki-Hyouk Choi, Mazin M. Fathi