Patents by Inventor Mehdi Vaez-Iravani

Mehdi Vaez-Iravani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240110782
    Abstract: A system includes a radiation source configured to emit a radiation beam. The system further includes a first optical sensor configured to detect a first intensity of a first portion of the radiation beam reflected from a surface of an object. The system further includes a second optical sensor configured to detect a second intensity of a second portion of the radiation beam scattered by the surface of the object. The system further includes a processing device communicatively coupled to the first optical sensor and the second optical sensor. The processing device is configured to determine at least one of a roughness or an emissivity of the surface of the object based on a comparison of the first intensity and the second intensity.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 4, 2024
    Inventors: Eric Chin Hong Ng, Todd J. Egan, Mehdi Vaez-Iravani
  • Patent number: 11908716
    Abstract: Methods and systems for monitoring etch or deposition processes using image-based in-situ process monitoring techniques include illuminating a measurement area on a sample disposed in a process chamber. The measurement area is illuminated using an input beam generated remote from the process chamber and transmitted to a first viewing window of the process chamber by a first optical fiber. Portions of the first input beam reflected from the measurement area are transmitted from the first viewing window to an imaging sensor by a second optical fiber. A sequence of images is obtained at the imaging sensor, and a change in reflectance of pixels within each of the images is determined. The etch or deposition process is monitored based on the change in reflectance.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: February 20, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Guoheng Zhao, Venkatakaushik Voleti, Todd Egan, Kyle R. Tantiwong, Andreas Schulze, Niranjan Ramchandra Khasgiwale, Mehdi Vaez-Iravani
  • Publication number: 20240035967
    Abstract: An imaging system for capturing spatial-omic images of biological tissue samples may include an imaging chamber configured to secure a biological tissue sample placed in the imaging system; a Time Delay and Integration (TDI) imager comprising at least one scan line; a light source configured to illuminate an area on the biological tissue sample that is being captured by the TDI imager; and a controller configured to cause the TDI imager to scan the biological tissue sample using one or more TDI scans of the biological tissue sample.
    Type: Application
    Filed: July 28, 2023
    Publication date: February 1, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Joseph R. Johnson, Ang Li, Jean Marc Fan Chung Tsang Min Ching, Mehdi Vaez-Iravani
  • Publication number: 20230169643
    Abstract: Implementations disclosed describe a method of obtaining a first image of a sample using a first light, wherein the sample has been subjected to a processing operation associated with a change of a thickness of the sample. The method further includes weighing the sample to obtain a first mass of the sample. The method further includes determining, based at least in part on the first image of the sample and the first mass of the sample, one or more properties of the sample, such as the change of a thickness of the sample, a change of an refractive index of the sample, and/or a change of an optical density of the sample a distribution of the change of the thickness of the sample.
    Type: Application
    Filed: November 28, 2022
    Publication date: June 1, 2023
    Inventors: Mehdi Vaez-Iravani, Todd J. Egan
  • Publication number: 20230060205
    Abstract: Examples disclosed herein generally relate to systems and methods for detecting the size of a particle in a fluid. In one example, a system for imaging a particle includes a first imaging device. The first imaging device includes a lens and a digital detector. The system further includes a laser source. He laser source is configured to emit a first laser beam and a second laser beam. The digital detector is configured to accumulate a metric of an intensity of an accumulated light that passes through the lens. The accumulated light is scattered from the particle. The accumulated light includes light from the first laser beam and the second laser beam.
    Type: Application
    Filed: August 15, 2022
    Publication date: March 2, 2023
    Inventors: Mehdi VAEZ-IRAVANI, Todd EGAN, Guoheng ZHAO
  • Publication number: 20230011748
    Abstract: Implementations disclosed describe, among other things, a system and a method of scanning a substrate with a beam of light and detecting for each of a set of locations of the substrate, a respective one of a set of intensity values associated with a beam of light reflected from (or transmitted through) the substrate. The detected intensity values are used to determine a profile of a thickness of the substrate.
    Type: Application
    Filed: July 8, 2022
    Publication date: January 12, 2023
    Inventors: Mehdi Vaez-Iravani, Todd J. Egan, Gopalakrishna B. Prabhu
  • Publication number: 20220367217
    Abstract: Methods and systems for monitoring etch or deposition processes using image-based in-situ process monitoring techniques include illuminating a measurement area on a sample disposed in a process chamber. The measurement area is illuminated using an input beam generated remote from the process chamber and transmitted to a first viewing window of the process chamber by a first optical fiber. Portions of the first input beam reflected from the measurement area are transmitted from the first viewing window to an imaging sensor by a second optical fiber. A sequence of images is obtained at the imaging sensor, and a change in reflectance of pixels within each of the images is determined. The etch or deposition process is monitored based on the change in reflectance.
    Type: Application
    Filed: May 14, 2021
    Publication date: November 17, 2022
    Inventors: Guoheng Zhao, Venkatakaushik Voleti, Todd J. Egan, Kyle R. Tantiwong, Andreas Schulze, Niranjan Ramchandra Khasgiwale, Mehdi Vaez-Iravani
  • Publication number: 20220327725
    Abstract: Methods for detecting areas of localized tilt on a sample using imaging reflectometry measurements include obtaining a first image without blocking any light reflected from the sample and obtaining a second image while blocking some light reflected from the sample at the aperture plane. The areas of localized tilt are detected by comparing first reflectance intensity values of pixels in the first image with second reflectance intensity values of corresponding pixels in the second image.
    Type: Application
    Filed: June 28, 2022
    Publication date: October 13, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Mehdi Vaez-Iravani, Guoheng Zhao
  • Publication number: 20220310425
    Abstract: A method includes identifying first structure data of a first region of a substrate and receiving optical metrology data of the substrate associated with one or more substrate deposition processes in a processing chamber. The method further includes determining, based on the optical metrology data and the first structure data, a first growth rate of the first region of the substrate associated with the one or more substrate deposition processes. The method further includes predicting, based on the optical metrology data and the first growth rate, thickness data of a second region of the substrate without second structure data of the second region.
    Type: Application
    Filed: March 29, 2021
    Publication date: September 29, 2022
    Inventors: Eric Chin Hong Ng, Edward Wibowo Budiarto, Mehdi Vaez-Iravani, Todd Jonathan Egan, Venkatakaushik Voleti
  • Patent number: 11442000
    Abstract: Examples disclosed herein generally relate to an apparatus and method for detecting particles in a fluid. A system for imaging a particle includes an imaging device. The imaging device has a lens and a detector. A laser source is configured to emit a laser beam. The detector is configured to accumulate an intensity of an accumulated light that passes through the lens. The accumulated light is scattered by the particle. The particle passes through the laser beam over a given period.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: September 13, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Mehdi Vaez-Iravani, Sankesha Bhoyar, Rachit Sharma, Guoheng Zhao
  • Patent number: 11441992
    Abstract: Examples disclosed herein generally relate to systems and methods for detecting the size of a particle in a fluid. In one example, a system for imaging a particle includes a first imaging device. The first imaging device includes a lens and a digital detector. The system further includes a laser source. He laser source is configured to emit a first laser beam and a second laser beam. The digital detector is configured to accumulate a metric of an intensity of an accumulated light that passes through the lens. The accumulated light is scattered from the particle. The accumulated light includes light from the first laser beam and the second laser beam.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: September 13, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Mehdi Vaez-Iravani, Todd Egan, Guoheng Zhao
  • Patent number: 11417010
    Abstract: Methods for detecting areas of localized tilt on a sample using imaging reflectometry measurements include obtaining a first image without blocking any light reflected from the sample and obtaining a second image while blocking some light reflected from the sample at the aperture plane. The areas of localized tilt are detected by comparing first reflectance intensity values of pixels in the first image with second reflectance intensity values of corresponding pixels in the second image.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: August 16, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Mehdi Vaez-Iravani, Guoheng Zhao
  • Patent number: 11353389
    Abstract: Examples disclosed herein relate to system and method for detecting the size of a particle in a fluid. The system includes a conduit for transporting a fluid and a sample area. Some of the fluid passes through the sample area. A first imaging device has an optical lens and a digital detector. A laser source emits a first laser beam. The digital detector generates a metric of an initial intensity of a scattered light that passes through the optical lens. The scattered light is scattered from particles passing through the sample area, and includes light from the first laser beam, which passes through the sample area. A controller outputs a corrected particle intensity based upon a comparison of the initial intensity to data representative of intensity of a focused and defocused particle. The corrected particle intensity generates a corrected metric corresponding to an actual size of the particles.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: June 7, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Mehdi Vaez-Iravani, Avishek Ghosh
  • Patent number: 11309163
    Abstract: A method of method of operating a multibeamlet charged particle device is disclosed. In the method, a target attached to a stage is translated, and each step of selecting beamlets, initializing beamlets, and exposing the target is repeated. The step of selecting beamlets includes passing a reconfigurable plurality of selected beamlets through the blanking circuit. The step of initializing beamlets includes pointing each of the selected beamlets in an initial direction. The step of exposing the target includes scanning each of the selected beamlets from the initial direction to a final direction, and irradiating a plurality of regions of the target on the stage with the selected beamlets.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: April 19, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Mehdi Vaez-Iravani, Christopher Dennis Bencher, Krishna Sreerambhatla, Hussein Fawaz, Lior Engel, Robert Perlmutter
  • Publication number: 20220099546
    Abstract: Examples disclosed herein relate to system and method for detecting the size of a particle in a fluid. The system includes a conduit for transporting a fluid and a sample area. Some of the fluid passes through the sample area. A first imaging device has an optical lens and a digital detector. A laser source emits a first laser beam. The digital detector generates a metric of an initial intensity of a scattered light that passes through the optical lens. The scattered light is scattered from particles passing through the sample area, and includes light from the first laser beam, which passes through the sample area. A controller outputs a corrected particle intensity based upon a comparison of the initial intensity to data representative of intensity of a focused and defocused particle. The corrected particle intensity generates a corrected metric corresponding to an actual size of the particles.
    Type: Application
    Filed: September 25, 2020
    Publication date: March 31, 2022
    Inventors: Mehdi VAEZ-IRAVANI, Avishek GHOSH
  • Patent number: 11204330
    Abstract: Systems and methods for inspection of a specimen are provided. One system includes an illumination subsystem configured to illuminate the specimen by scanning a spot across the specimen. The system also includes a non-imaging detection subsystem configured to generate output signals responsive to light specularly reflected from the spot scanned across the specimen. In addition, the system includes a processor configured to generate images of the specimen using the output signals and to detect defects on the specimen using the images. In one embodiment, the non-imaging detection subsystem includes an objective and a detector. An NA of the objective does not match a pixel size of the detector. In another embodiment, the non-imaging detection subsystem includes an objective having an NA of greater than about 0.05. The system may be configured for multi-spot illumination and multi-channel detection. Alternatively, the system may be configured for single spot illumination and multi-channel detection.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: December 21, 2021
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Mehdi Vaez-Iravani, Eliezer Rosengaus
  • Publication number: 20210372911
    Abstract: Examples disclosed herein generally relate to systems and methods for detecting the size of a particle in a fluid. In one example, a system for imaging a particle includes a first imaging device. The first imaging device includes a lens and a digital detector. The system further includes a laser source. He laser source is configured to emit a first laser beam and a second laser beam. The digital detector is configured to accumulate a metric of an intensity of an accumulated light that passes through the lens. The accumulated light is scattered from the particle. The accumulated light includes light from the first laser beam and the second laser beam.
    Type: Application
    Filed: May 27, 2020
    Publication date: December 2, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Mehdi VAEZ-IRAVANI, Todd EGAN, Guoheng ZHAO
  • Patent number: 11187654
    Abstract: An imaging reflectometer includes a source module configured to generate a plurality of input beams at different nominal wavelengths. An illumination pupil having a first numerical aperture (NA) is arranged so that each of the plurality of input beams passes through the illumination pupil. A large field lens is configured to receive at least a portion of each of the plurality of input beams and provide substantially telecentric illumination over a sample being imaged. The large field lens is also configured to receive reflected portions of the substantially telecentric illumination reflected from the sample. The reflected portions pass through an imaging pupil having a second NA that is lower than the first NA and are received by an imaging sensor module that generates image information.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: November 30, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Guoheng Zhao, Mehdi Vaez-Iravani, Todd J. Egan
  • Publication number: 20210366143
    Abstract: Methods for detecting areas of localized tilt on a sample using imaging reflectometry measurements include obtaining a first image without blocking any light reflected from the sample and obtaining a second image while blocking some light reflected from the sample at the aperture plane. The areas of localized tilt are detected by comparing first reflectance intensity values of pixels in the first image with second reflectance intensity values of corresponding pixels in the second image.
    Type: Application
    Filed: May 19, 2020
    Publication date: November 25, 2021
    Inventors: Mehdi Vaez-Iravani, Guoheng Zhao
  • Patent number: 11156566
    Abstract: Methods for performing imaging reflectometry measurements include illuminating a measurement area on a sample using an input beam having a first peak wavelength, and obtaining multiple images of the measurement area using portions of the input beam reflected from the sample. A reflectance intensity value is determined for each of a plurality of pixels in each of the images. A parameter associated with the particular structure is determined using the reflectance intensity value.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: October 26, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Guoheng Zhao, Mehdi Vaez-Iravani