Patents by Inventor Mehmet Aykac

Mehmet Aykac has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11961164
    Abstract: An improved method for time alignment (TA) procedure and crystal efficiency (CE) normalization estimation procedure for a PET scanner system is disclosed. In the TA procedure modeled time-of-flight (TOF) data are compared against the measured TOF data from an axially short cylinder phantom in order to find individual detector's time offsets (TOs). Then the TOs are estimated simultaneously by matching the TOF center of mass between the modeled and measured TOF data. In the CE estimation, TOF reconstruction of CBM data on the axially short cylinder phantom is performed. Alternating between TOF image reconstruction and CE updates eventually lead to the correct estimation of activity and CE component.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: April 16, 2024
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Vladimir Panin, Mehmet Aykac, Shikui Yan, Brian Kelly
  • Patent number: 11828891
    Abstract: A scintillation block detector employs an array of optically air coupled scintillation pixels, the array being wrapped in reflector material and optically coupled to an array of silicon photomultiplier light sensors with common-cathode signal timing pickoff and individual anode signal position and energy determination. The design features afford an optimized combination of photopeak energy event sensitivity and timing, while reducing electronic circuit complexity and power requirements, and easing necessary fabrication methods. Four of these small blocks, or “miniblocks,” can be combined as optically and electrically separated quadrants of a larger single detector in order to recover detection efficiency that would otherwise be lost due to scattering between them.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: November 28, 2023
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Robert A. Mintzer, James Christopher Arnott, Mehmet Aykac, Johannes Breuer, Sanghee Cho, Peter Hansen, Maciej P. Kapusta, James L. Corbeil, Nan Zhang
  • Publication number: 20220350037
    Abstract: Systems and methods to estimated mean randoms include acquisition of list mode data describing true coincidences and delay coincidences detected by a positron emission tomography scanner during a scan of an object, determination, for each crystal of the positron emission tomography scanner and for each of a plurality of time periods of the scan, of delay coincidences including the crystal based on the list mode data, determination, each crystal, of determine a singles rate associated with each time period based on the delay coincidences determined for the crystal over the time period, determination, for each time period, of determine estimated mean randoms for each of a plurality of pairs of the crystals based on the singles rate associated with the time period for each crystal of the crystal pair, and reconstruction of an image of the object based on the estimated mean randoms for each time period and the detected true coincidences.
    Type: Application
    Filed: April 30, 2021
    Publication date: November 3, 2022
    Inventors: Vladimir Panin, Mehmet Aykac
  • Publication number: 20220309718
    Abstract: An improved method for time alignment (TA) procedure and crystal efficiency (CE) normalization estimation procedure for a PET scanner system is disclosed. In the TA procedure modeled time-of-flight (TOF) data are compared against the measured TOF data from an axially short cylinder phantom in order to find individual detector's time offsets (TOs). Then the TOs are estimated simultaneously by matching the TOF center of mass between the modeled and measured TOF data. In the CE estimation, TOF reconstruction of CBM data on the axially short cylinder phantom is performed. Alternating between TOF image reconstruction and CE updates eventually lead to the correct estimation of activity and CE component.
    Type: Application
    Filed: September 29, 2020
    Publication date: September 29, 2022
    Inventors: Vladimir Panin, Mehmet Aykac, Shikui Yan, Brian Kelly
  • Patent number: 11002867
    Abstract: Systems and methods to determine random coincidence rates include determination of a detector rate for each of a plurality of detectors of a positron emission tomography scanner based on a frame of positron emission tomography data, determination of a sensitivity for each detector crystal of the plurality of detectors, based on the detector rate of the detector including the detector crystal, determination of a singles rate for each detector crystal based on the detector rate of the detector including the detector crystal and the determined sensitivity of the detector crystal, estimation of a mean random coincidence rate for each of a plurality of pairs of the detector crystals based on the singles rate of each detector crystal of each of the plurality of pairs of the detector crystals, correction of the acquired frame of positron emission tomography data based on the estimated mean random coincidence rates, and reconstruction of a positron emission tomography image based on the corrected frame of positron em
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: May 11, 2021
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Mehmet Aykac, Vladimir Y. Panin
  • Publication number: 20210124067
    Abstract: Systems and methods to determine random coincidence rates include determination of a detector rate for each of a plurality of detectors of a positron emission tomography scanner based on a frame of positron emission tomography data, determination of a sensitivity for each detector crystal of the plurality of detectors, based on the detector rate of the detector including the detector crystal, determination of a singles rate for each detector crystal based on the detector rate of the detector including the detector crystal and the determined sensitivity of the detector crystal, estimation of a mean random coincidence rate for each of a plurality of pairs of the detector crystals based on the singles rate of each detector crystal of each of the plurality of pairs of the detector crystals, correction of the acquired frame of positron emission tomography data based on the estimated mean random coincidence rates, and reconstruction of a positron emission tomography image based on the corrected frame of positron em
    Type: Application
    Filed: October 23, 2019
    Publication date: April 29, 2021
    Inventors: Mehmet Aykac, Vladimir Y. Panin
  • Patent number: 10852449
    Abstract: A method for self-time alignment procedure for a PET scanner system is disclosed. Modeled time-of-flight (TOF) data are compared against the measured TOF data in order to find individual detector's time offsets (TOs). Then the TOs are estimated simultaneously by matching the TOF center of mass between the modeled and measured TOF data.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: December 1, 2020
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Vladimir Y. Panin, Mehmet Aykac
  • Publication number: 20200041665
    Abstract: A scintillation block detector employs an array of optically air coupled scintillation pixels, the array being wrapped in reflector material and optically coupled to an array of silicon photomultiplier light sensors with common-cathode signal timing pickoff and individual anode signal position and energy determination. The design features afford an optimized combination of photopeak energy event sensitivity and timing, while reducing electronic circuit complexity and power requirements, and easing necessary fabrication methods. Four of these small blocks, or “miniblocks,” can be combined as optically and electrically separated quadrants of a larger single detector in order to recover detection efficiency that would otherwise be lost due to scattering between them.
    Type: Application
    Filed: October 9, 2019
    Publication date: February 6, 2020
    Inventors: Robert A. Mintzer, James Christopher Arnott, Mehmet Aykac, Johannes Breuer, Sanghee Cho, Peter Hansen, Maciej P. Kapusta, James L. Corbeil, Nan Zhang
  • Publication number: 20200033491
    Abstract: A method for self-time alignment procedure for a PET scanner system is disclosed. Modeled time-of-flight (TOF) data are compared against the measured TOF data in order to find individual detector's time offsets (TOs). Then the TOs are estimated simultaneously by matching the TOF center of mass between the modeled and measured TOF data.
    Type: Application
    Filed: July 27, 2018
    Publication date: January 30, 2020
    Inventors: Vladimir Y. Panin, Mehmet Aykac
  • Patent number: 10527740
    Abstract: A scintillation block detector employs an array of optically air coupled scintillation pixels, the array being wrapped in reflector material and optically coupled to an array of silicon photomultiplier light sensors with common-cathode signal timing pickoff and individual anode signal position and energy determination. The design features afford an optimized combination of photopeak energy event sensitivity and timing, while reducing electronic circuit complexity and power requirements, and easing necessary fabrication methods. Four of these small blocks, or “miniblocks,” can be combined as optically and electrically separated quadrants of a larger single detector in order to recover detection efficiency that would otherwise be lost due to scattering between them.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: January 7, 2020
    Inventors: Robert A. Mintzer, James Christopher Arnott, Mehmet Aykac, Johannes Breuer, Sanghee Cho, Peter Hansen, Maciej P. Kapusta, James L. Corbeil, Nan Zhang
  • Patent number: 10353087
    Abstract: A method comprises: detecting a plurality of radiation events using a plurality of radiation detectors; determining a fraction of the plurality of radiation events, such that a coincidence circuit has sufficient capacity to process each radiation event in the fraction of the plurality of radiation events; counting the determined fraction of the plurality of radiation events using the coincidence circuit, and excluding a remainder of the plurality of radiation events from the counting; and performing positron emission tomography (PET) processing on each radiation event in the fraction of the plurality of radiation events.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: July 16, 2019
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Mehmet Aykac, Vladimir Y. Panin, Andrew Philip Moor
  • Patent number: 10168439
    Abstract: A method of scanner correction includes obtaining a first photopeak location for a first crystal in a detector. Image data is received from the first crystal. The first crystal generates the image data during a current imaging procedure. The image data is processed using the first photopeak location. A second photopeak location is determined for the first crystal from the image data. A difference between the first photopeak location and the second photopeak location of the first crystal is determined and the image data is reprocessed using the second photopeak location when the difference between the first photopeak location and the second photopeak location exceeds a predetermined threshold. An image is generated using the image data.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: January 1, 2019
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Mehmet Aykac, Vladimir Y. Panin
  • Publication number: 20150285922
    Abstract: A scintillation block detector employs an array of optically air coupled scintillation pixels, the array being wrapped in reflector material and optically coupled to an array of silicon photomultiplier light sensors with common-cathode signal timing pickoff and individual anode signal position and energy determination. The design features afford an optimized combination of photopeak energy event sensitivity and timing, while reducing electronic circuit complexity and power requirements, and easing necessary fabrication methods. Four of these small blocks, or “miniblocks,” can be combined as optically and electrically separated quadrants of a larger single detector in order to recover detection efficiency that would otherwise be lost due to scattering between them.
    Type: Application
    Filed: April 3, 2014
    Publication date: October 8, 2015
    Applicant: Siemens Medical Solutions USA, Inc.
    Inventors: Robert A. Mintzer, James Christopher Arnott, Mehmet Aykac, Johannes Breuer, Sanghee Cho, Peter Hansen, Maciej P. Kapusta, James L. Corbeil, Nan Zhang
  • Publication number: 20140084169
    Abstract: A method for improving timing response in light-sharing scintillation detectors is disclosed. The method includes detecting an event, by a plurality of photo sensors, from a scintillation crystal. The method then includes sampling and digitizing the photo sensor outputs by an analog-to-digital converter. Then the method includes correcting associated timing data, by a processor, for each of the photo sensor outputs based on a lookup table. The method then includes selectively time shifting the photo sensor outputs based on the lookup table to generate corrected photo sensor outputs. The method then includes summing the corrected photo sensor outputs by the processor. The method then includes generating an event time, by the processor, for the detected event based on the sum of the corrected photo sensor outputs.
    Type: Application
    Filed: December 2, 2013
    Publication date: March 27, 2014
    Applicant: SIEMENS MEDICAL SOLUTIONS USA, INC.
    Inventors: Mehmet Aykac, Michael Loope, Mark Musrock
  • Patent number: 8624193
    Abstract: A method for improving timing response in light-sharing scintillation detectors is disclosed. The method includes detecting an event, by a plurality of photo sensors, from a scintillation crystal. The method then includes sampling and digitizing the photo sensor outputs by an analog-to-digital converter. Then the method includes correcting associated timing data, by a processor, for each of the photo sensor outputs based on a lookup table. The method then includes selectively time shifting the photo sensor outputs based on the lookup table to generate corrected photo sensor outputs. The method then includes summing the corrected photo sensor outputs by the processor. The method then includes generating an event time, by the processor, for the detected event based on the sum of the corrected photo sensor outputs.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: January 7, 2014
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Mehmet Aykac, Michael Loope, Mark Musrock
  • Patent number: 8384037
    Abstract: A method, disclosure relates to for improving detection of true coincidence events and differentiating them from events detected from scattered and random gamma photons, comprises receiving electromagnetic radiation at a plurality of photo detectors that was generated by a scintillating crystal impacted by a gamma photon, and processing data received at a subset of the plurality of photo detectors that are closer to a scintillating crystal, thereby improving a timing coincidence window for detecting a coincidence event.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: February 26, 2013
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Mehmet Aykac, Mark Musrock, Carlyle L. Reynolds
  • Patent number: 8330112
    Abstract: A method for improving timing response in light-sharing scintillation detectors is disclosed. The method includes detecting an event, by a plurality of photo sensors, from a scintillation crystal. The method then includes sampling and digitizing the photo sensor outputs by an analog-to-digital converter. Then the method includes correcting associated timing data, by a processor, for each of the photo sensor outputs based on a lookup table. The method then includes selectively time shifting the photo sensor outputs based on the lookup table to generate corrected photo sensor outputs. The method then includes summing the corrected photo sensor outputs by the processor. The method then includes generating an event time, by the processor, for the detected event based on the sum of the corrected photo sensor outputs.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: December 11, 2012
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Mehmet Aykac, Michael Loope, Mark Musrock
  • Patent number: 7759647
    Abstract: PET detector modules are provided within a multi-dimensional magnetic field, to confine the range of emitted positrons from an object being imaged to improve spatial resolution of reconstructed PET images. Each module includes a number of independent, optically isolated detectors. Each detector includes an array of scintillator crystals read out by an array of APDs (avalanche photodiodes).
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: July 20, 2010
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Ron Grazioso, Mehmet Aykac
  • Patent number: 7737407
    Abstract: A detector is provided for nuclear medicine imaging. Scintillator pixels form an axial array and a transaxial array. A first photosensor is positioned along the axial array; and a second photosensor is positioned along the transaxial array, wherein the first photosensor and the second photosensor provide dual event localization for nuclear medicine imaging.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: June 15, 2010
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Ronald Grazioso, Mehmet Aykac
  • Publication number: 20100084559
    Abstract: A method, process and apparatus for improved nuclear imaging. Specifically, the disclosure relates to improving detection of true coincidence events and differentiating them from events detected from scattered and random gamma photons. Embodiments comprise receiving electromagnetic radiation at a plurality of photo detectors that was generated by a scintillating crystal impacted by a gamma photon. Embodiments further comprise processing data received at a subset of the plurality of photo detectors that are closer to a scintillating crystal, thereby improving a timing coincidence window for detecting a coincidence event.
    Type: Application
    Filed: September 11, 2009
    Publication date: April 8, 2010
    Applicant: Siemens Medical Solutions USA, Inc.
    Inventors: Mehmet Aykac, Mark Musrock, Carlyle L. Reynolds